Wisconsin Department of

Revenue

2024
 Wisconsin Property Assessment Manual

Volume 2 - Residential, Apartments and Agricultural

2024 Wisconsin Real Property Assessment Manual

Volume 2 -Residential, Apartments and Agricultural

Introduction

The Wisconsin Property Assessment Manual (WPAM) serves as the guide for uniform property assessment throughout the State under sec. 73.03(2a), Wis. Stats. Sec. 70.32, Wis. Stats., requires that assessors use the WPAM when valuing real property. The WPAM is maintained by the Department of Revenue (DOR), Office of Technical and Assessment Services.

The WPAM Volume 2 includes instructions, cost tables, depreciation and residual schedules, area modifiers, and a glossary of terms for Residential, Apartment and Agricultural buildings. The basis of the WPAM Volume 2 is the January 1, 2018 local construction costs. Modifiers are included to reflect local conditions.

The WPAM Volume 2 refers to, and affirms, recognized practices in the professional appraisal of property; however, it is not a comprehensive textbook in the theory and practice of professional appraising. The assessor is expected to be grounded in these theories which can be found in a multitude of textbooks such as The Principles of Appraisal Practices, published by The Appraisal Institute. In addition, the assessor is expected to have knowledge of mass appraisal principles which are discussed in textbooks such as Property Assessment Valuation and Mass Appraisal of Real Property, both published by the International Association of Assessing Officers.

The WPAM Volume 2 is meant to be interpreted in its entirety. Extracting material from one section without understanding how it fits into the whole can result in misunderstandings. For these reasons, DOR has developed guides that answer common questions for property owners. These guides can be found on the DOR website. It is recommended that property owners direct questions regarding a specific property to the municipal assessor where the property is located.
VALUATION THEORY 1-1
Full Market Value 1-1
Traditional Approaches to Value 1-1
APPLYING THE COST APPROACH 1-3
Replacement Cost 1-3
Depreciation 1-3
Estimating Depreciation 1-4

An appraisal, or an assessment, in itself, is nothing more than an opinion of value. This does not imply, however, that one opinion is necessarily as good as another; there are valid and accurate assessments, and there are invalid and inaccurate ones. The validity of an assessment can be measured against the supporting evidence from which it was derived, and its accuracy against that very thing it is supposed to predict-the actual behavior of the market. Each is fully contingent upon the ability of the assessor to document adequate data and to interpret that data into an indication of value.

FULL MARKET VALUE

The basis for the assessor's valuation of real property is found in s. 70.32, (1) Stats."Real property shall be valued by the assessor in the manner specified in the Wisconsin Property Assessment Manual under s. 73.03(2a), Stats., from actual view or from the best information that the assessor can practicably obtain at the full value which could ordinarily be obtained therefor at private sale." Numerous Wisconsin court cases have held that full value is equivalent to market value.

In the book Real Estate Appraisal Terminology, market value is defined as, "The highest price in terms of money which a property will bring in a competitive and open market under all conditions requisite to a fair sale. The buyer and seller, each acting prudently, knowledgeably and assuming the price is not affected by undue stimulus." Thus, the goal of the assessor is to estimate the full or market value of the real property.

TRADITIONAL APPROACHES TO VALUE

Market value can be defined for many different purposes, and the forces which create, sustain or destroy value are numerous and varied. The assessor's function is to compile and analyze related data, consider all factors influencing value, and process and translate that data into a final conclusion or estimate of value. The assessor must do this for each property.
Three approaches can be used to process this data into an estimate of market value. These approaches are: the Cost Approach, the Direct Sales Comparison Approach and the Income Approach. Each approach is based on the principle that the market value of a property is no more than the cost of acquiring and/or reproducing an equally desirable substitute property. The quantity, quality and accuracy of the data available to the assessor determines which approach or approaches the assessor should use.

THE COST APPROACH involves estimating the depreciated cost of reproducing or replacing the building and site improvements. Reproduction Cost refers to the cost of reproducing a replica property, whereas Replacement Cost refers to the cost of producing improvements of equal utility. From this cost new, depreciation is deducted for loss in value caused by physical deterioration and functional and economic obsolescence. The estimated value of the land is added to the depreciated cost to give an estimate of the market value of the property.
The benefit of the Cost Approach lies in its extent of application; it is the one approach that can be used on all types of properties. It is a starting point for assessors and therefore a very effective "yardstick" in estimating market value. Its widest application is in assessing properties lacking adequate market and income data.

THE DIRECT SALES COMPARISON APPROACH involves compiling sales of properties which are comparable to the property being assessed. These sales are then adjusted for any differences, and a value estimate is obtained by comparing the adjusted prices of the sold properties. The approach is most valid when the sold properties are very similar to the subject property. The procedure for using this approach is essentially the same for all types of property, with the only difference being the elements of comparison.

The benefit of this approach lies in its ability to produce estimates of value which directly reflect the actions of the market. Its application depends upon the availability of comparable sales.

THE INCOME APPROACH measures the present worth of the future benefits of a property by capitalizing the net income stream over the remaining economic life of the property. The approach involves making an estimate of the economic rent of a property, deducting the appropriate vacancy and collection losses and all applicable operating expenses, such as the cost of insurance and reserve allowances for replacements, to derive the net income, which is capitalized into an estimate of market value.

The income approach is most often used to assess commercial properties but can be used to assess any income-producing property. The income approach requires the assessor to be able to relate to the changing economic environment and to analyze income, expenses and capitalization rates.

These three approaches to value are discussed in greater detail in Volume I and in most assessment and appraisal textbooks.

The Cost Approach assumes that a valid indication of value may be derived by estimating the value of the land, and adding the land value to the depreciated cost of the structures on the land; the general cost approach model is:

```
    Estimated Land Value
+ Estimated Replacement Cost New of Structures
- Estimated Depreciation
= Indication of Property Value
```

Volume II is designed to assist the assessor in estimating the Replacement Cost and the Depreciation for the various structures.

REPLACEMENT COST

Replacement Cost is the current cost of producing an improvement of equal utility to the subject property; it may or may not be the cost of reproducing a replica property. The distinction is between Replacement Cost, which refers to a substitute property of equal utility, and Reproduction Cost, which refers to a substitute replica property. In a particular situation the two concepts may be interchangeable, but they are not necessarily so. They both, however, have application in the Cost Approach to value, the difference being reconciled in the consideration of depreciation allowances.
In actual practice, outside of a few historic-type communities in this country, developers and builders for obvious economic reasons replace buildings, not reproduce them. It logically follows that if an assessor's job is to measure the actions of knowledgeable persons in the market place, the use of proper replacement costs should provide an accurate point of beginning in the valuation of most improvements.
The replacement cost includes the total cost of construction incurred by the builder, whether preliminary to, during the course of, or after completion of the construction of a particular building. Among these are material, labor, all subcontracts, builders' overhead and profit, architectural and engineering fees, consultation fees, survey and permit fees, legal fees, taxes, insurance and cost of interim financing.

DEPRECIATION

Simply stated, depreciation can be defined as a loss in value from all causes. As applied to real estate, it represents the loss in value between market value and the sum of the replacement cost new of the improvements plus the land value as of a given time. The causes for the loss in value may be divided into three broad classifications: physical deterioration, functional obsolescence, and economic obsolescence.

Physical deterioration is the wearing out of the various building components, referring to both short-life and long-life items, through the action of the elements, age and use. The condition may be considered either curable or incurable, depending upon whether it may or may not be practical and economically feasible to cure the deficiency by repair and replacement.

Functional Obsolescence is caused by either inadequacies or overadequacies in design, style, composition or arrangement inherent in the structure itself, which lessen its usefulness. Like physical deterioration, the condition may be considered either curable or incurable. Some of the more common examples of functional obsolescence are excessive wall and ceiling heights, excessive structural construction, surplus capacity, ineffective layouts and inadequate building services.

Economic Obsolescence is caused by factors extraneous to the property, such as changes in population characteristics and economic trends, encroachment of inharmonious land uses and governmental restrictions. The condition is generally incurable in that the causes lie outside the property owner's realm of control.

ESTIMATING DEPRECIATION

Depreciation represents the assessor's estimate of the degree that the present and future appeal of a property has been diminished by deterioration and obsolescence. Of the three estimates necessary to the Cost Approach, depreciation is the most difficult. The accuracy of the estimate will be a product of the assessor's experience in recognizing the symptoms of deterioration and obsolescence, and the ability to exercise sound judgment in equating all observations to the proper amount to be deducted from the replacement cost new. Several acceptable methods may be employed:

- Physical deterioration and/or functional obsolescence can be measured by observing and comparing the physical condition and/or functional deficiencies of the subject property as of a given date with either an actual or hypothetical comparable, new and properly planned structure.
- Curable physical deterioration and functional obsolescence can be measured by estimating the cost of restoring each item of depreciation to a physical condition as good as new, or estimating the cost of eliminating the functional deficiency.
- Functional and economic obsolescence can be measured by capitalizing the estimated loss in rental due to the deficiency.
- Total accrued depreciation may be estimated by first estimating the total useful life of a structure and then translating its present condition, desirability and usefulness into an effective age (rather than an actual age) which would represent that portion of its total life (percentage) which has been used up.
- Total accrued depreciation can be estimated by deriving the amount of depreciation recognized by purchasers as evidenced in the prices paid for property in the marketplace; the loss of value is the difference between the cost of replacing the structure new and its actual selling price (total property selling price less the estimated value of the land).

In addition to providing an estimate of market value, the Cost Approach provides the assessor with a data inventory of each property. The assessor must make a complete interior and exterior inspection of each property in order to apply the Cost Approach. This inspection will enable the assessor to make the comparisons and evaluations necessary to apply the Direct Sales Comparison and Income Approaches. The assessor can also use the inspection to verify the information provided on building permits and to make note of any other changes to the property since the previous inspection.

Volume II explains how the assessor can use the Cost Approach to develop market value estimates for residential, apartment and agricultural properties.
INTRODUCTION 2-1
SIDE 1: PROPERTY ID \& ASSESSMENT HISTORY 2-3
SIDE 2: IMPROVEMENT DATA 2-3
Vacant Lot 2-3
Dwelling 2-3
Other 2-3
Story Height 2-3
Style 2-3
Use 2-4
Exterior Wall Construction 2-6
Age 2-6
Erected 2-6
Remodeled 2-6
Basement 2-6
Heating 2-7
Heating Fuel Type 2-7
Heating System Type 2-7
Living Accommodations 2-8
Kitchen Rating 2-9
Bathroom Rating 2-10
Interior Condition Relative to Exterior 2-11
Physical Condition 2-11
Other Features 2-12
Masonry Adjustment 2-12
Recreation Room 2-12
Woodburning Fireplace 2-12
Metal Fireplace 2-13
Gas Fireplace 2-13
Basement Garage 2-13
Built-in Garage 2-13
Dormers 2-13
Total Additional Other Features 2-15
Total Other F eatures 2-15
Grade Factor 2-16
Cost and Design Factor 2-17
Condition, Desirability and Usefulness (CDU) Factor 2-17
Attachments 2-18
Total Attachment Amount 2-19
LIVING AREAS 2-21
Basement 2-21
Fin Bsmt Liv (Finished Basement Living Area) 2-21
First Floor 2-21
Second Floor 2-22
Additional Floor 2-22
Attic Finished 2-22
One--half Story Finished 2-23
Attic Unfinished 2-23
One-half Story Unfinished 2-24
Unfinished Room 2-24
DWELLING COMPUTATIONS 2-26
SIDE 3: OTHER BUILDING IMPROVEMENTS,ADDITIONAL OTHER FEATURES AND ATTACHMENTS AND APARTMENT DATA 2-28
OTHER BUILDING IMPROVEMENTS 2-28
Structure Type Codes 2-28
Quantity 2-28
Construction 2-28
Year 2-28
Size 2-28
Grade 2-29
Rate 2-29
Modifications 2-29
Special Modifications 2-29
Local Modifier 2-29
Replacement Cost New (RCN) 2-29
Cond. 2-29
Percent (\%) Good 2-29
Obsolescence/MarketAdjustment (OB/MA) 2-30
Replacement Cost New Less Depreciation (RCNLD) 2-30
RESIDENTIAL OTHER BUILDING IMPROVEMENT CODES 2-31
GROSS BUILDING SUMMARY \& TOTALOTHER IMPROVEMENTS 2-32
ID 2-32
Use 2-32
Construction 2-32
Grade 2-32
Age 2-32
Size 2-32
Rate 2-32
Local Modifier 2-32
Replacement Cost New 2-32
Cond. 2-32
Percent Good 2-32
Obsolescence/MarketAdjustment 2-32
Market Value 2-32
Total Other Improvements 2-32
PERSONNEL DATA 2-33
Additional Other Features 2-33
Additional Attachments 2-33
Apartment Data 2-33
Notations And P hotograph 2-33
SIDE 4: OWNERSHIP, PARCEL IDENTIFICATION AND LAND DATA 2-34
OWNERSHIP 2-34
Building Permit Record 2-34
Property Identification 2-34
Map Number 2-34
Routing Number 2-34
Card Number 2-34
Neighborhood 2-34
Land Use 2-35
Living U nits 2-35
Zoning 2-35
Property Location 2-35
SALES DATA 2-35
Transfer of Ownership 2-35
Date 2-35
Unique Sales Number 2-35
Type 2-35
Sale Price 2-35
Source 2-36
Sales Validity Codes 2-36
LAND DATA \& COMPUTATIONS 2-36
None 2-37
Lots 2-37
Square Feet 2-38
Acreage 2-38
Productivity Rating 2-38
Gross 2-38
INFLUENCE FACTORS 2-39
Land Use Code 2-40
PROPERTY FACTORS 2-40
Topography 2-40
Utilities 2-41
Street Or Road 2-41
Dwelling Setback 2-42
Fronting Traffic 2-42
OWNERSHIP 2-43
ENTRANCE CODES 2-43
ASSESSOR'S FINAL REPORT 2-43
Effective Date 2-43
Reason 2-43
Land or Improvement (L or I) 2-44
Plus or Minus (+ or -) 2-44
Amount 2-44
Deactivate 2-44

INTRODUCTION

The property record card is the most valuable single document available to the appraiser. Its main use is as a listing document. It provides space to accurately list in detail all of the pertinent characteristics of the subject property that contribute to value. This gives the appraiser a mental picture of what actually constitutes each subject property. Space is provided on the property record card (PRC) to price the land and improvement by utilizing this manual's cost approach to value. Other features of the PRC include an area for sales data, past assessment information, building permit records, etc.
The PRC is a four-sided folded card. The front side is utilized to enter property identification data such as parcel number, name and address of owner, legal description, etc. The area is large enough to incorporate preprinted labels if desired. Up to three years of assessment history can also be posted on the front side of the property record card.

The second side provides an area for a detailed listing of the dwelling characteristics, an area to sketch the dwelling and a pricing ladder to compute the value of the dwelling utilizing the cost approach to value.
Other features and additional attachments not found in the cost tables of this manual are listed and priced on the third side of the property record card. An area is also provided on the third side to list and price other minor buildings and apartments. A blank area is provided to attach a photograph and make notations.

The fourth side of the property record card provides space for all land listing data and computations including: a sketch of the parcel, property identifiers such as parcel number and property location, sales data, building permit records and the assessor's final report information.

The four-sided folded property record card was designed to meet the appraiser's needs as a functional, useful document in the assessment process. It was designed to provide the appraiser with one single detailed document containing all pertinent property characteristics necessary to make a sound, timely appraisal and to provide adequate listing documentation to assist in defending that appraisal.

The Pricing Schedules and Cost Tables in this manual are provided to assist the appraiser in arriving at accurate and uniform valuations. Used properly, they should prove to be an invaluable tool. Quality Valuations, however, are not the product of schedules and tables themselves, but rather of the appraiser's ability to use them effectively. In order to bring this about, a thorough understanding of the make-up, and the capabilities and limitations of each schedule, is essential. The appraiser must know the specifications from which the base prices were derived, the composition of the prices, and the proper techniques and procedures for applying the prices. More important, the appraiser must be able to exercise good common sense and sound judgment in selecting and using them.

Extensive effort has been made in developing the schedules to minimize these compromises and limit them to variables which have minimal influence on the final value of the building. The schedules have been designed to reflect actual building costs and practices. Field tests have proven them to be both accurate and reliable, and, when applied properly, highly effective in arriving at realistic replacement costs.

Pricing schedules and related cost tables are included in this manual to assist the appraiser in arriving at an accurate estimation of Replacement Cost New. They have been developed by applying unit-in-place costs to the construction of specified hypothetical or model buildings. Application of the schedules involves the selection of the model in terms of component construction which most nearly resembles the subject building and adjusting its price to compensate for all significant variations.

Cost adjustments for the variations which are most frequently encountered in a particular type building are included. Adjustments for other variations may be made by using either the Other Features cost tables, or other appropriate schedules.

SIDE 1: PROPERTY ID \& ASSESSMENT HISTORY

A blank area on the front side of the property record card is provided for property identifiers such as parcel number, name and address of owner, legal description, etc. This area is large enough to incorporate labels preprinted with this information.

The lower portion of the front side of the property record card provides space to enter three years of assessment history by class for land, improvements and total assessments. It also provides space to enter the number of acres and dollar assessment value per acre by class. Areas not requiring entries are indicated by X's.

SIDE 2: IMPROVEMENT DATA

VACANT LOT

If the parcel is vacant, circle the descriptor V and do not enter any other data on this side of the card.

DWELLING

If there is a dwelling on the parcel, circle the descriptor D and enter the appropriate data necessary.

500	V

OTHER

If the parcel is not vacant but contains buildings that would be listed under Other Building Improvements and/ or the Gross Building Summary, circle the descriptor 0 and enter the appropriate data necessary.

500	V	VACANT	D

STORY HEIGHT

Circle the numeric characters that are most representative of the story height of the dwelling.

505	STORY HEIGHT				
	1.0	1.5	2.0	2.5	3.0

Circle 1.0 to indicate one story.
Circle 1.5 to indicate one and one-half stories.
Circle 2.0 to indicate two stories.
Circle 2.5 to indicate two and one-half stories.
Circle 3.0 to indicate three stories.
Note: Refer to story height illustrations found in the appendix of this manual.

STYLE

Circle the numeric code (01-21) which is most representative of the style of the dwelling. Only one entry may be circled.
Circle 01 to indicate RANCH
Circle 02 to indicate BI--LEVEL
Circle 03 to indicate SPLIT-LEVEL
Circle 04 to indicate CAPE COD
Circle 05 to indicate BUNGALOW
Circle 06 to indicate COTTAGE
Circle 07 to indicate CRAFTSMAN
Circle 08 to indicate PRAIRIE
Circle 09 to indicate BASIC SINGLE STORY
Circle 10 to indicate FARMHOUSE
Circle 11 to indicate VICTORIAN
Circle 12 to indicate COLONIAL
Circle 13 to indicate CONTEMPORARY

STYLE					
$\mathbf{0 1}$	$\mathbf{R A N C H}$	09	BASIC SINGLE STORY	17	CONDOMINIUM
02	BI-LEVEL	10	FARMHOUSE	18	TOWN HOUSE
03	SPLIT LEVEL	11	VICTORIAN	19	DUPLEX
04	CAPE COD	12	COLONIAL	20	APARTMENT
05	BUNGALOW	13	CONTEMPORARY	21	MANUFACTURED
06	COTTAGE	14	MODERN SINGLE STORY	22	OTHER
07 CRAFTSMAN	15	MODERN MULTI-STORY			
08	PRAIRIE	16 EXECUTIVE MANSION			

Circle 15 to indicate MODERN MULTI-STORY
Circle 16 to indicate EXECUTIVE MANSION
Circle 17 to indicate CONDOMINIUM
Circle 18 to indicate TOWN HOUSE
Circle 19 to indicate DUPLEX
Circle 20 to indicate APARTMENT
Circle 21 to indicate MANUFACTURED
Circle 22 to indicate OTHER
Note: Style should be circled for all residential dwellings whether they be single-family residences or multifamily such as duplexes or condominiums.

If the dwelling being listed is a multifamily unit such as a duplex or condominium, the numeric code which is most representative of the use should be circled. The following example show a Colonial-style duplex listed as Colonial under style and duplex under use.

	STYLE					
	01	RANCH	09	BASIC SINGLE STORY	17	CONDOMINIUM
	02	BI-LeVEL	10	farmhouse	18	TOWN HOUSE
	03	Split level	11	VICtorian		duplex
505	04	CAPE COD	(12)	COLONIAL	20	APARTMENT
	05	BUNGALOW	13	CONTEMPORARY	21	manufactured
	06	COttage	14	MODERN SINGLE STORY	22	OTHER
	07	CRAFTSMAN	15	MODERN MULTI-STORY		
	08	PRAIRIE	16	EXECUTIVE MANSION		

Note: If the dwelling is a single-family residence, use is to be left blank.

Ranch (01)

Ranch style is a one-story house that usually has an attached garage and a large picture window facing the street. The shape of the house is either rectangular or an "L" or "U" shape. The houses have low-pitched roofs and extended eaves. This became the dominant style in 50 's and 60's.

Bi-Level (02)

Bi-level, also known as a raised ranch, is a variation of the ranch style. It is a one-story house with a full basement at half grade. The partially excavated basement typically has daylight windows in the lower level. The two levels are split by a foyer at grade level. A Bi-level should be listed as a one-story with a full basement. The lower level often has finished basement living area with the same quality of finish as the upper level. This adaption of the ranch style was popular during the 70's.

Split-Level (03)

A split-level, also known as a tri-level or quad-level, has living areas staggered on two or more levels, separated by one half grade. There are typically two or more short sets of stairs running up or down. Split-level residences have a split roof design.

Cape Cod (04)

A one story with attic or a one and one-half story house with dormers, extra gables, or shed dormers, generally built after the 1920's. It is characterized by a steep roof slope and dormers which project from the roof and have windows on their fronts. Because of the roof design, the area of the second floor is usually 40% to 75% of the ground floor area.

Bungalow (05)

A one-story house, often with finished attic area, popular in the early 20th century, and generally built from 1905 to 1930. This style has one or more low-pitched overhanging gables, and is characterized by exposed beams, projecting brackets, and use of natural materials. Porches usually extend across the front and are supported by wide columns. Windows are generally casement or double hung. Bungalow is often associated with Craftsman style.

Cottage (06)

A small, plain single family house. It is usually one story built with minimum construction standards resulting in narrow boxy exterior appearance with little or no ornamentation, low pitch roof, few window openings, low basement wall height, simple floor plan with small rooms, minimal closet facilities and electrical outlets, softwood trim and often inadequate plumbing facilities for today's standard of living.

Craftsman (07)

Craftsman style homes are usually constructed of mixed natural materials (wood, stone, and brick) with lowpitched roofs, wide eaves, and exposed brackets. Most homes of this style have porches with thick round or tapered square columns. Built-in, hand crafted features are common, often with a fireplace as a dominant feature. The style is generally symmetrical with double hung windows and multi-gables or hipped roofs. The style is related to Prairie and Bungalow styles.

Prairie (08)

A home characterized by low pitched roofs, generally gabled and enclosed, often with hip or flat roofs. Prairie homes are boxy and low-proportioned with strong horizontal lines and oversized eaves originated by Frank Lloyd Wright and most popular in the Midwest. Prairie style often includes open interiors and rows of clerestory windows, art glass and cantilevered projections, and centrally massed chimneys.

Basic Single Story (09)

This style is a basic one-story home generally built between 1900 and 1950 that is typically built at a quality grade less than C. It has a simple design that often includes only a single bathroom and has small bedrooms. It often includes an unfinished attic and an unfinished basement. These comparatively low cost houses have few amenities and little to no fenestration.

Farmhouse (10)

This multi-story style derives its name from the original simple and functional house built in the early to mid-20th century in rural America. These houses often have large
front porches or wraparound decks and have gable roofs that may cover the porch. They are minimally ornamental and have large windows to bring in light. The exterior is faced with horizontal siding and the homes often have a simple rectangular floor plan with side wings.

Victorian (11)

This style includes several types of architecture dating to the second half of the 19th century. The last authentic Victorians were constructed in the early 1900's. Contemporary builders have carried this eclectic design to current day, using modern materials and incorporating the detail from the era which can now be economically mass produced. This style home is asymmetrical, two + stories with steep roof pitches which may include turrets and dormers. Large porches are embellished with decorative railings and posts. Modern versions of this style remain popular in Wisconsin. Related styles that included in this category include Queen Anne, Stick, Shingle, Gothic and Folk, among others.

Colonial (12

Colonial style is typically a rectangular shaped two-story home. Each floor is two rooms deep, and has approximately the same square footage. The roof structure has a medium slope, with limited attic space that is not intended for living area.

Contemporary (13)

A modernistic style of architecture that incorporates irregular, asymmetrical facades with strong geometric shapes. Contemporary design homes may be single or multi-story and may be of split level construction. Houses typically incorporate tall, irregularly shaped windows, open planning and angular exterior lines. Roofs may be flat, shed, gable or various combinations thereof. These homes often have green HVAC and plumbing systems to conserve energy.

Modern Single Story (14)

Like the Modern Multi-Story this style has gained popularity in the 21st century, and is replacing the ranch style as the dominant single story design. This style is characterized by its single story, high ceilings, and moderate to steep pitched hip or multi-gabled roof. Windows are large and abundant, permitting extensive natural light. There is often an emphasis on intelligent and/or green materials. Prominent garages with $3-4$ stalls are common.

Modern Multi-Story (15)

Popular from 2000 to the present, this style dominates modern American suburbs, borrowing elements from a variety of styles to create an entirely new look. Prominent 3-4 stall garages, and a mix of exterior wall coverings are common in this style. Features include tall entranceways, abundant large windows, and high ceilings.

Executive Mansion (16)

A large, luxury home built using the highest quality materials of brick or cut stone. These homes commonly have three or
more baths, two or more fireplaces, and expansive entries with elaborate open stairways. These large-scale homes are typically 4,000 to 12,000 square feet per story, and are often located in prestigious neighborhoods.

Condominium (17)

A form of fee ownership of whole units or separate portions of multi-unit buildings by statute, which provides the mechanics and facilities for formal filing and recording of a divided interest in real property, where the division is vertical as well as horizontal. Fee ownership of units in a multi- unit property and joint ownership of the common areas. Not to be confused with Cooperative.

Town House (18)

The town house is a hybrid between a condo and a singlefamily home. It is both a style of residence and a form of ownership. These are side by side units joined by one or two common walls and having multiple stories. Each town house unit is one of a group of two to six units that are similar but may not be identical. Such units never have units above or below and always have individual exterior walls. There may be shared common areas.

Duplex (19)

Any two-unit residence not qualifying as a townhouse, built after the mid-20th century. New Style Duplexes have separate entrances, kitchens and separate full baths.

Apartment (20)

A building containing multiple self-contained living units. Apartment buildings of less than four units should be listed as residential class. Apartment buildings of four or more units should be listed as commercial class.

Manufactured (21)

Manufactured Homes built in the factory under a federal building code administered by the U.S. Department of Housing and Urban Development (HUD). Manufactured homes may be single- or multi-section and are transported to the site and installed. This style includes homes typically known as mobile homes, modular or pre-fab.

Other (22)

Any residence that does not fit into any category defined above. Examples include geodesic homes, earth homes, buildings converted from other uses such as schools or churches.

EXTERIOR WALL CONSTRUCTION

Circle the numeric code which is most representative of the exterior wall construction of the dwelling.
Circle 1 to indicate WOOD .. will be priced as Frame. Circle 2 to indicate CONCRETE BLOCK will be priced as Concrete Block.
\qquad
Circle 4 to indicate ALUMINUM/VINYL \qquad
Circle 5 to indicate CEMENT FIBER \qquad
Circle 6 to indicate METAL
Circle 7 to indicate BRICK \qquad
Circle 8 to indicate STONE \qquad
Circle 9 to indicate MASONRY/FRAME \qquad
Circle 10 to indicate HARDBOARD/PLYWOOD .
Circle 11 to indicate SHINGLE/SHAKE \qquad will be priced as Frame. will be priced as Brick or Stone. will be priced as Brick or Stone

Circle 12 to indicate SYNTHETIC PLASTER
on RIGID INSULATION (EIFS) . will be priced as Frame.
Circle 13 to indicate MASONRY VENEER will be priced as Masonry Veneer
Circle 14 to indicate STAY-IN-PLACE
POURED CONCRETE (SIP)
Circle 15 to indicate LOG . \qquad
Circle 16 to indicate HAND-HEWN LOG \qquad
Circle 17 to indicate OVERSIZED LOG \qquad
Circle 18 to indicate OTHER will be priced as Rustic Log. will be priced as Hand-Hewn Log will be priced as Hand-Hewn Log.

	EXTERIOR WALL CONSTRUCTION					
	1	WOOD	7	BRICK	13	MASONRY VENEER
	2	block	8	stone	14	SIP
505	3	stucco	9	MASONRY/FRAME	15	LOG
	4	ALUM/VINYL	10	HRDBRD/PLYWD	16	HAND-HEWN LOG
	5	cement fiber	11	shingle/shake	17	oversized log
	6	metal	12	EIFS	18	Other

Note: Refer to residential cost schedule section of this manual.

AGE

Space is provided to enter four numeric characters denoting the year of construction, the year of remodeling and the effective year.

510	AGE			
	ERECTED -- -- -- --	REMODELED -- -- -- --	EFFECTIVE _- -- -- --	

ERECTED

Refers to the original date of construction. This item should always be entered. If the exact date cannot be detemined, make the best estimate possible based on known construction dates in the immediate area.

REMODELED
Refers to the date of the last extensive remodeling, i.e., remodeling which significantly alters the "effective age" of the dwelling. If the dwelling has not been remodeled, leave the item blank.

EFFECTIVE

Refers to the age of the structure along with physical wear and tear. Effective age can be more or less than the Erected Age.

BASEMENT

Refers to the extent or size of the basement. Three alternatives are provided. Circle the numeric code which is most representative of the subject property. Only one selection should be circled.

515	1 NONE	2 CRAWL	3 PART	4 FULL	5 WALKOUT

Circle 1 NONE to indicate slab construction: no basement or crawl space.
Circle 2 CRAWL to indicate crawl space to $1 / 4$ basement excavation.
Circle 3 PART to indicate $1 / 4$ to $3 / 4$ basement excavation area.
Circle 4 FULL to indicate $3 / 4$ to full basement excavation area.
Circle 5 WALKOUT to indicate floor area above grade with doorway to the outside.
Note: These basement ratings correspond to the total first floor living area (including additions).

HEATING

Refers to the presence and type of heating system. Five (5) alternatives are provided. Circle the type code which is most representative of the subject property. Only one selection may be circled.

30	1	2	3	4	5
	NONE	BASIC	AIR CON	AIR CON (SEP DUCTS)	GEOTHERMAL

Circle 1 NONE to indicate that the subject dwelling does not have a heating system, which can be classified as BASIC, warranting a full deduction from the Base Price for "no heating" as indicated by the pricing schedule.
Circle 2 BASIC to indicate that the subject dwelling has a central heating system commensurate with the quality grade specifications of the dwelling, warranting no addition to or deduction from the Base Price.
Circle 3 AIR CON to indicate that in addition to the BASIC heating system, the sub- ject dwelling has a central cooling system commensurate with quality grade specifications of the dwelling, warranting an addition to the Base Price for "air conditioning" as indicated by the pricing schedule. If a cooling system as described exists, circle this numeric code only. This code implies that a combined central heating and air conditioning system exists.
Circle 4 AIR CON (SEP DUCTS) to indicate that in addition to the BASIC heating system, the subject dwelling has a central cooling system commensurate with quality grade specifications of the dwelling, warranting an addition to the Base Price for "air conditioning" as indicated by the pricing schedule. If a cooling system as described exists, circle this numeric code only. This code implies that a separate cooling system exists.

Circle 5 GEOTHERMAL to indicate that the subject dwelling has a geothermal heat pump or ground source heat pump used for central heating and/or cooling system that transfers heat to or from the ground.

Note: Permanent "non-central" types of heating/air conditioning systems should be listed as no heat (1-none) and priced in the Other Features section under Total Additional Other Features (field 559).

HEATING FUEL TYPE

Refers to the type of fuel used to power the heating system. Four (4) alternatives are provided, but only one may be circled.

520	FUELTYPE			
	2 ELECT	3 OIL	$4 \mathrm{WD} / \mathrm{COAL}$	

Circle 1 to indicate GAS
Circle 2 to indicate ELECTRIC
Circle 3 to indicate OIL
Circle 4 to indicate WD/COAL or a woodburning or coal central heating system.
Note: If NONE has been circled for heating entry, leave this entry blank.

HEATING SYSTEM TYPE

Refers to the actual type of heating system. Four (4) alternatives are provided. Only one selection should be circled.

520 SYSTEM TYPE			
	1 WARMAIR	2 ELECT	3 HOT WATER

Circle 1 WARM AIR to indicate the presence of a forced warm-air system. With this system, the furnace has a fan or blower that pushes the warmed air through relatively small ducts. These ducts may run horizontally or vertically. Filters can be installed in the system to clean the air, and a humidifying system may be included to add the needed moisture.

Circle 2 ELECTRIC to indicate the presence of an electric heating system. This system is characterized by electric resistance elements that convert elec tricity into heat. These elements are embedded in the floors, walls and ceilings or baseboard to provide radiant heat.
Circle 3 HOT WATER to indicate the presence of a hot water (hydronic) system. With this system, water is heated in a boiler of cast iron or steel. It is then pumped by one or more circulators through small tubes into baseboard panels, radiators or tubes which are embedded in the walls, ceilings or concrete slab.

Circle 4 STEAM to indicate the presence of a steam heating system. With this system, steam heat is produced by a furnace which is a boiler with a firebox underneath it. When the water in the boiler boils, it makes steam, which is forced by pressure through pipes into radiators throughout the dwelling.

Note: If NONE has been circled for heating entry, leave this entry blank.

LIVING ACCOMMODATIONS

Blanks are provided to enter either one or two numeric characters denoting the quantities of each of the items described below. Each character position should be filled in. If the item does not exist, zeros or hash marks should be entered for assurance of a more complete, accurate and uniform record keeping system.

TOTAL ROOMS - Refers to the total number of separate rooms, excluding bathroom(s), comprising the living area of the dwelling, i.e., kitchens, living rooms, dining rooms, family rooms, dens, studies and bedrooms.

BEDROOMS - Refers to the total number of separate rooms designed to be used as bedrooms. If a room was designed to be a bedroom but is being utilized for some other purpose, such as a den, it is to be included in this count.

FAMILY ROOMS - Refers to the number of informal living rooms. The quality of finish is consistent with the general finish of the dwelling.

FULL BATHS - Refers to the number of three-fixture bathrooms which include a water closet, lavatory and bathtub or shower stall. (A bathtub with a shower outlet is considered one fixture.)

HALF BATHS - Refers to the number of two-fixture toilet rooms including a water closet and lavatory.

ADDITIONAL FIXTURES - Refers to individual fixtures that do not fall into the categories previously named, i.e., utility sinks, water closets, etc.

Note: Each style/grade of dwelling has a standard complement of fixtures built into its base price. A standard complement includes a kitchen sink, hot water heater and three bathroom fixtures (a full bath) totaling five fixtures.

Additional fixtures are those fixtures in the dwelling that are in addition to the standard complement and also in addition to any full or half bathrooms.

TOTAL FIXTURES - Refers to the total number of plumbing fixtures. This includes the standard complement of five fixtures plus any additional fixtures found in the dwelling.

ROUGH-IN - Refers to the total number of plumbing rough-ins. None are included in the Base Dwelling Price. Add as needed. A rough-in consists of a drain and water line hookup for laundry facilities or for future plumbing installations.

WHIRLPOOL TUB - Indicates a deluxe bathtub (J acuzzi) with water jets to produce a therapeutic massage.

HOT TUB - Indicates a therapeutic tub, sometimes referred to as a redwood hot tub, which can be found either indoors or outdoors, usually for two or more persons.

The example below shows the correct listing for a dwelling with a total of eight rooms, four of which are bedrooms, and one of which is a family room; the dwelling also has two full baths, one half bath and one additional fixture (a utility sink). There are three rough-ins for a future bath. There is also one whirlpool tub.

Total fixtures equal: 5 (standard complement) +3 (one additional full bath) +2 (one half bath) +1 (one additional fixture, utility sink) $=11$ total fixtures.

KITCHEN RATING

Circle the numeric code which is most representative of the overall desirability of the kitchen, including the quality and number of cupboards and built-in appliances, relative to the quality and age of the dwelling.

530	Kitchen rating				
	1 VG	260	3 A	av	4 P

Circle 1 VERY GOOD to indicate that you judge the overall desirability of the kitch en to be vastly superior to what you would normally expect to find in a dwelling of this type and quality.
Circle 2 GOOD to indicate that you judge the overall desirability of the kitchen to be superior to what you would normally expect to find in a dwelling of this type and quality.

Circle 3 AVERAGE to indicate that you judge the overall desirability of the kitchen to be about equal to what you would normally expect to find in a dwelling of this type and quality.

Circle 4 POOR to indicate that you judge the overall desirability of the kitchen to be definitely inferior to what you would normally expect to find in a dwell ing of this type and quality.

Note: Base Dwelling Prices do not include the costs for any built-in appliances. Comments pertaining to appliances are included only to assist the lister in the valuation of the property.

The following guidelines are provided to assist the lister in making the proper judgment:

$$
\begin{array}{ll}
\text { VERY GOOD QUALITY } & \begin{array}{l}
\text { An abundantly lighted, spacious and attractive kitchen of } \\
\text { coordinated styling and decor, having high-quality components } \\
\text { consisting of an extensive amount } 20 \text { to } 25 \text { linear feet of } \\
\text { floor-standing cabinets with marble, quartz or the highest- } \\
\text { quality granite countertops and splash. A comparable } \\
\text { complement of wall mounted cabinets and all major built- } \\
\text { in appliances and modern conveniences will be found. }
\end{array}
\end{array}
$$

GOOD QUALITY A well lighted, relatively roomy and attractive kitchen of coordinated styling and decor, having good-quality components consisting of at least 16 to 20 linear feet of floor-standing cabinets with countertops and splash of either quartz, simulated marble or good-quality granite countertops. A comparable complement of wall-mounted cabinets and most of the major built-in appliances, as well as a limited number of other modern conveniences will be found.

AVERAGE QUALITY
An adequately lighted, compact, color-coordinated kitchen having average-quality components consisting of at least 12 to 16 linear feet of floor-standing cabinets with countertops and splash of ceramic tile, quart, or granite. A comparable complement of wall-mounted cabinets, a range exhaust and at least two additional major built-in appliances, i.e., garbage disposal, oven, range or dishwasher will normally be found.

An adequately lighted, compact, color-coordinated kitchen having fair but below average quality components consisting of at least 8 to 12 linear feet of floor-standing cabinets with countertops andsmallsplash of ceramic tile orlaminated plastic. A comparable deficiency of wall-mounted cabinets and no built-in appliances.

Note: These descriptions are supplied as guidelines only. They are not meant to be strictly adhered to. Sound judgment and consistency should always prevail.

BATHROOM RATING

Circle the numeric character provided which is most representative of the overall desirability of the bathroom(s) relative to the quality and age of the dwelling.

530	BATHROOM RATING			
	1 VG	2 GD	3 AV	4 PR

Circle 1 VERY GOOD to indicate that you judge the overall desirability of the bathroom(s) to be vastly superior to what you would normally expect to find in a dwelling of this type and quality.

Circle 2 GOOD to indicate that you judge the overall desirability of the bathroom(s) to be superior to what you would normally expect to find in a dwelling of this type and quality.

Circle 3 AVERAGE to indicate that you judge the overall desirability of the bathroom(s) to be about equal to what you would normally expect to find in a dwelling of this type and quality.

Circle 4 POOR to indicate that you judge the overall desirability of the bathroom(s) to be definitely inferior to what you would normally expect to find in a dwelling of this type and quality.

The following guidelines are provided to assist the lister in making the proper judgment:
VERY GOOD QUALITY An abundantly lighted, relatively large and attractive, colorcoordinated bathroom, having high-quality fixtures and built-ins, including a large vanity with quartz, marble or high-end granite top, and expansive mirror, marble or import ceramic tile bath and or shower recesses with high quality shower doors, import ceramic tile, stone or comparable quality floor covering and a quality ventilation system.

GOOD QUALITY A well-lighted, relatively roomy and attractive, color-coordinated bathroom, having good-quality fixtures and builtins, including a medium vanity with quartz, marble or granite top, a large mirror, marble or ceramic tile bath and or shower recesses with good quality shower doors, ceramic tile, stone or comparable quality floor covering and a quality ventilation system.

AVERAGE QUALITY An adequately lighted, compact, color-coordinated bathroom, having average-quality fixtures and built-ins including a small vanity with granite or ceramic tile top, a standard mirror, ceramic tile bath recesses, vinyl tile, ceramic tile or comparable quality floor covering and an adequate ventilation system.

A poorly lighted, unattractive bathroom, having cheap, poorquality fixtures and floor covering.

Note: These descriptions are supplied as guidelines only. They are not meant to be strictly adhered to. Sound judgment and consistency should always prevail.

PHYSICAL CONDITION

Refers to a composite judgment of the overall physical condition or state of repair of the interior and exterior features of the dwelling relative to its age; or the level of maintenance which you would normally expect to find in a dwelling of a given age.
Consideration should be given to foundation, porches, walls, exterior trim, roofing, chimneys, wall finish, interior trim, kitchen cabinets, heating system and plumbing. Four alternatives are provided: circle the numeric code which is most representative of the subject property. Only one selection should be circled.

550	PHYSICAL CONDITION				
	1 VG	2 GD	3 AV	4 PR	5 UN

Circle 1 VERY GOOD to indicate that the dwelling definitely exhibits a high standard of maintenance and upkeep in relation to its age.

Circle 2 GOOD to indicate that the dwelling definitely exhibits an above ordinary standard of maintenance and upkeep in relation to its age.
Circle 3 AVERAGE to indicate that the dwelling shows only minorsigns of deterioration caused by normal wear and tear. The dwelling exhibits an ordinary standard of maintenance and upkeep in relation to its age.
Circle $4 \quad$ POOR to indicate that the dwelling shows many signs of deferred maintenance and definitely exhibits a below ordinary standard of maintenance and upkeep in relation to its age.

Circle 5 UNSOUND to indicate that the dwelling is definitely unsound and unfit for use.

Note: Deferred maintenance may be defined as existing but, unfulfilled repairs and rehabilitation that will require immediate expenditures. It does not necessarily imply inadequate prior maintenance.

OTHER FEATURES

Eight features are included for consideration, seven individual features and one composite. Space is provided to enter the actual square footage or dimensions for masonry adjustment or recreation room.

	OTHER FEATURES	AMOUNT
551	MASONRYADJ [] - - ${ }^{\text {a }}$ - -	
552	RECROOM - - ${ }^{\text {a }}$ - -	
553	WBFP:STACKS - OPENINGS -	
554	METALFP:STACKS _ OPENINGS -	
555	GAS FP -	
556	basement garage, no. CARS	
557	built-in garage, no. Cars -	
558	DORMERS, TYPE: _ LF.	
559	TOTAL ADDITIONAL OTHER FEATURE AMT	
	TOTAL OTHER FEATURES	

MASONRY ADJUSTMENT

A bracket [] is provided to enter a plus sign (+) to indicate the presence of brick or stone walls on a dwelling listed to be priced as frame, or a minus sign (-) to indicate the presence of frame or equivalent walls on a dwelling listed to be priced as masonry. Enter the appropriate dimensions or square footage in the character positions provided. Space is provided at the far right to enter the actual value of the masonry adjustment. Please refer to the Other Features section of the cost schedules in this manual for appropriate square foot masonry adjustment costs.

The example below for a frame constructed house shows a positive masonry adjustment for 4 feet of stone wainscoting across the front of the house. The stone covers an area 4 feet high by 30 feet long or 120 square feet. The cost is $\$$ per square foot (taken from the cost table) or $\$ \quad$ for the adjustment.

551 OTHER FEATURES	AMOUNT		
	1 MASONRY ADJ $[+]$	$\underline{0} \underline{4} \times \underline{3} \underline{0}$	

RECREATION ROOM FINISH

Space is provided to enter either the square foot or dimension measure of a basement recreation room in the dwelling plus the dollar value attributable to it. Please refer to the Base Price Adjustments section of the cost schedules in this manual for appropriate square foot recreation room costs.

The example below shows a 14 ft . by 20 ft . basement recreation room, or 280 square feet. The cost is $\$ \quad$ per square foot (taken from the cost table) or $\$ \quad$ attributed to the recreation room.

Note: A recreation room is always considered to be of lesser quality construction than the rest of the dwelling. If a recreation room is of the same quality as the rest of the dwelling, it should be listed as finished living area.

WOOD-BURNING FIREPLACE

This parameter indicates the presence of one or more wood-burning masonry fireplaces. No other type is considered in this field. Character positions are provided to enter the number of stacks and the number of openings, as well as the dollar value of the fireplace(s). Please refer to the Other Features Section of the cost schedules for appropriate wood-burning masonry fireplace costs.
The example below shows one wood-burning masonry fireplace with two openings and two stacks (for a two-story dwelling). The value taken from the cost table for this fireplace is plus (for the additional opening) plus (for the additional stack above the base of one).

```
+ + =
```

553	OTHER FEATURES		AMOUNT
	3 WB FP:STACKS $\underline{2}$	OPENINGS $\underline{2}$	

METAL FIREPLACE

Indicates the presence of prefabricated metal fireplace(s). A character position is provided to enter the number of stacks as well as the dollar value of the fireplace(s). Please refer to the Other Features section of the cost schedules for appropriate metal fireplace costs.

The example below shows one prefabricated metal fireplace with two stacks (for a two-story dwelling). The value taken from the cost table for this fireplace is (for the additional stack above the base of one). +

GAS FIREPLACE

Indicates the presence of a gas-only (not wood burning) prefabricated metal fireplace(s). A character position is provided to enter the number of fireplaces as well as the dollar value of the fireplace(s).

BASEMENT GARAGE

Indicates the presence of a garage in the basement level of the dwelling. A character position is provided to enter the car capacity of the basement garage. Space is also provided to enter the additional dollar value necessary for the basement garage. Please refer to the Attachments section of the cost schedules in this manual for appropriate additional costs attributed to basement garages.

The example below shows a dwelling with a 2-car basement garage. The additional cost necessary for the 2-car basement garage is
(taken from the cost table).

BUILT-IN GARAGE
Indicates the presence of a garage at grade level having living areas both adjacent to and above the garage. A character position is provided to enter the car capacity of the built-in garage. Space is also provided to enter the additional dollar value necessary for the built-in garage. Please refer to the Attachments section of the cost schedules in this manual for appropriate additional costs attributed to built-in garages.

The example below shows a dwelling with a 2-car built-in garage. The additional cost necessary for the 2-car built-in garage (frame in this example) is
(taken from the cost table).

DORMERS

Whether gable, hip or shed, the cost is per linear foot of the projected face. The cost is an adjustment to the dwelling price and accounts for the exterior construction. When finished, the interior should be included with the total floor area and priced with the dwelling. Space is provided for the type, i.e., shed, gable, and for the linear footage.

The example below shows 28 linear feet of gabled dormer. The additional cost for these dormers is (taken from the cost page). $\quad \times 28$ linear feet $=$

	OTHER FEATURES		AMOUNT
553	8 Dormers, TYPE: GGable	28 L.F	

ROOF ADJUSTMENT

Indicates the presence of a metal roof, whether it be shingles, shakes, vertical panels. The cost is an adjustment to the dwelling price and accounts for the number of stories.

ADDITIONAL OTHER FEATURES	AMOUNT
ROOF ADJ - METAL	

WHOLE HOUSE OR COMMERCIAL GENERATOR

Indicates the presence of a whole house or commercial generator. A character position is provided to enter the number of generators as well as the dollar value of the generator.

ADDITIONAL OTHER FEATURES	AMOUNT
WHOLE HOUSE GENERATOR	

WOOD BURNING FURNACE

Indoor

Indoor wood-burning forced air furnaces use a large firebox to burn wood. Heat from these furnaces is distributed using a blower.

Outdoor

Outdoor wood-burning furnaces are typically part of a hydronic system in which the furnace heats water and the hot water is pumped into the house, where it transmits its heat to the interior air via radiators or other radiant-heating mechanisms.

ADDITIONAL OTHER FEATURES	AMOUNT
WD FURNACE IN__ OUT__	

ADDITIONAL OTHER FEATURES	AMOUNT
ROOF ADJ - METAL	
Whole house generator	
WD FURNACE IN_ OUT _	
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL ADD'L. OTH: FEATURES CARRY TOTAL TO 559	

TOTAL ADDITIONAL OTHER FEATURES

This entry is provided as a dollar value summary of any additional other features not found in 1 through 7. Each additional other feature should be listed on side 3 in the Additional Other Features area by using an abbreviated written description. Each item must then be soundly valued utilizing the appraiser's best judgment of value. Cost tables are not provided for Additional Other Features.

Once each item has been valued, the values are summed and the total is carried to the (559 field) Total Additional Other Features line on side 2 under Other Features.

The following example shows two entries under Additional Other Features. One is for sliding glass patio doors with an estimated value of The other entry is for a residential (indoor) fountain.

ADDITIONAL OTHER FEATURES	AMOUNT
ROOF ADJ - METAL	
Whole house generator	
WDFURNACE IN __ OUT _	
${ }_{1}$ Sliding glass patio doors	
2 Residential fountain	
3	
4	
5	
6	
7	
8	
TOTAL ADD'L. OTH: FEATURES CARRY TOTAL TO 559	

The total of the two additional other features () is then carried to the Total Additional Other Features line.

Note: As a guideline, an item should be listed under Other Features if it is permanently affixed or part of the original dwelling structure and has approximately the same life. If it does not meet either of these requirements, it should be listed and priced as an attachment.

TOTAL OTHER FEATURES

This one-line dollar value entry is the total of all other features.
The example below shows the positive masonry adjustment of
; a recreation room worth ; a woodburning masonry fireplace worth ; a metal fireplace worth
plus (additional stack); the additional cost for a basement garage of the cost for a two-car built-in frame garage of ; the cost of 28 linear feet of gable dormer or ; and a total estimate figure for sliding patio doors and a residential fountain of The items are totaled to for all of the other features.

	OTHER FEATURES	AMOUNT
551	1 MASONRY ADJ $\times 5 / B[+] \quad \underline{4} \times \underline{3} \underline{0}$	
552	2 RECROOM $\underline{3} \underline{0} \times \underline{3} \underline{0}$	
553	3 WBFP:STACKS $\underline{1}$ OPENINGS $\underline{2}$	
554	4 METALFP:STACKS $\underline{2}$ OPENINGS	
555	5 GAS FP -	
556	6 BASEMENT GARAGE, NO. CARS $\underline{2}$	
557	7 built-in garages, no. Cars $\underline{2}$ 2 TYPE: Frame	
558	8 DORmERS, TYPE: Gable	
559	9 TOTAL ADDITIONAL OTHER FEATURE AMT	
	TOTAL OTHER FEATURES	

GRADE FACTOR

The letter grades are preprinted on the card. Circle the appropriate letter grade. A bracket [] is provided to enter a plus or minus, if necessary.

Four principal Quality Grade classifications are utilized, plus two additional classifications: AA grade is for the very best of materials and workmanship, and E grade is for the cheapest, most inferior quality of materials and workmanship.
The grade classifications are:

```
AA Grade - Very Best Quality
    A Grade - Excellent Quality
    B Grade - Good Quality
    C Grade - Average Quality
    D Grade - Fair Quality
    E Grade - Poor Quality
```

Each of the six grades or classifications above is assigned a factor based on the models utilized to establish the cost tables. This promotes and maintains uniformity in value relationship between grades.

These factors are:
AA Grade - 2.50
A Grade - 1.55
B Grade - 1.28
C Grade - 1.00
D Grade - 0.85
E Grade - 0.55
However, in an effort to more precisely define dwelling grade, intermediate factors of pluses $(+)$ and minuses (-) were developed. A grade of $C+$ is better than a straight C grade, and a C - poorer than a straight C grade.
By utilizing these intermediate ratings, a full range of quality grade factors is listed below. These factors are:

A A Plus (+)	3.25	C Plus (+)	1.10
A A	2.50	C	1.00
A A Minus (-)	2.00	C Minus (-)	0.95
A Plus (+)	1.75	D Plus (+)	0.90
A	1.55	D	0.85
A Minus (-)	1.45	D Minus (-)	0.75
B Plus (+)	1.35	E Plus (+)	0.65
B	1.28	E	0.55
B Minus (-)	1.20	E Minus (-)	0.45

The quality grade factor should represent a composite judgment of the overall quality of materials and workmanship throughout the dwelling. Extreme caution must also be exercised so as not to confuse the concepts of "quality" and "condition." The grade cannot be influenced in any way by the physical condition of the dwelling. The example listing below shows a (B-) dwelling with a grade factor of 1.20 . The (B) is circled, a minus is placed in the bracket, and the grade factor is written in the space to the right of the bracket.

| 560 GRADE FACTOR | AA | A | B | C | D | E | [-] 1.20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: Please refer to the residential photographs section of this manual for further quality grade specifications.

COST AND DESIGN FACTOR

Space is provided to enter a plus or minus symbol (within the brackets) and a percentage (to the right of the bracket).

560 COST \& DESIGN FACTOR
Examples of the cost and design factor are: architectural fees, material quantities, labor efficiency, energy adjustments, etc., i.e., factors that influence total construction costs and could vary from dwelling to dwelling.

The proper selection of the cost and design factor is largely a product of the experience and sound judgment of the appraiser, who must have the ability to analyze various variable construction components and determine the influence of each upon the overall cost.

The following example illustrates one appraiser's utilization of the cost and design factor for a raised ranch. The appraiser's judgment and experience indicated that a 5% additional cost was necessary to construct that particular dwelling.

560 COST \& DESIGN FACTOR
[+] $0 \leq 5$

Note: Please refer to the residential section of this manual for a further explanation of the cost and designfactor and its use.

CONDITION, DESIRABILITY AND USEFULNESS (CDU)FACTOR

This is the most critical entry the appraiser must estimate based upon sound judgment and experience. This single percentage entry must reflect the normal "loss of value" attributed to depreciation as well as the influence of desirability of that property in the marketplace.

To better understand and determine CDU, depreciation and desirability must first be defined. The standardized causes for depreciation are:

1. Physical Depreciation - pertains to the wearing out of various building compo-nents through the action of the elements, age and use.
2. Functional Obsolescence - is a condition caused by either inadequacies or overadequacies in design, style, composition or arrangement inherent to the structure itself, which tend to lessen the usefulness and utility.
3. Economic Obsolescence - is a condition caused by factors extraneous to the property itself such as changes in population characteristics and economic trends, encroachment of inharmonious land uses, excessive taxes and govern-mental restrictions.

Estimates of the causes above for depreciation are all necessary to determine CDU in the cost approach but do not constitute the entry in themselves. It is also necessary to estimate desirability, which is judged on those qualities that make a dwelling either more or less desirable to a typical purchaser in the market. To determine each cause of depreciation, along with desirability as four separate entities, is very difficult under normal conditions because of the tendencies of these factors to overlap. Therefore, this manual has segregated each under the heading it is most apt to represent. The causes for depreciation and desirability are treated throughout this manual as the following table illustrates:

Condition
 Physical depreciation

Usefulness

Functional Obsolescence
"Condition" is physical depreciation and "usefulness" is functional obsolescence. Desirability, however, may involve both economic obsolescence and market influences.
"Depreciation" is a loss of value or, in other words, a negative factor. "Desirability," on the other hand, may have either a negative or positive effect.

To combine depreciation and desirability into one factor represented by a "percent good" is a most difficult judgment for the appraiser. To aid the appraiser in making this decision, two workspaces are provided on the property record card. One utilizes checkmark entries for exterior components, mechanical systems and interior room CDU's. The second workspace is a locational checkmark entry to aid the appraiser in determining a portion of desirability.

The large grid workspace provides an area to indicate CDU based individually on each room, each major exterior characteristic, and each major system found in the dwelling. It also indicates the number of rooms and where each room is located with reference to floor level. The grid provides the appraiser with a more detailed and defendable summary of each dwelling. It also aids the appraiser in determining the overall CDU and assists in analyzing comparable properties.

The locational checkmark entry is provided as an aid to determine a portion of desirability by indicating whether the location of the subject property is improving, stable or declining.

The following example shows how one appraiser utilized the CDU workspace as an aid in determining CDU:

As a final note, in making any appraisal, be it individual or comparative, the appraiser must consider each cause for depreciation and desirability as separate factors.

ATTACHMENTS

Space is provided for six (6) separate entries of attachments. However, listing procedures are different for the last, or number (6), entry. In the first five entries, only those attachments which have been coded may be entered, although the same attachment code may be entered any number of times. The appropriate two-digit attachment code is to be entered in the column that corresponds to its position of floor location, either first, second or third. Square footage is to be entered in the Area column, and a cost in the last column. For example, an appraiser listed an open frame porch on the first floor, 80 square feet in area with a value of $\$ 2,993.60$ (value taken from cost table section of this manual).

	ATTACHMENTS					ATTACHMENT CODES	
	1st	2nd	3rd	AREA	AMOUNT	11 OFP	21 OMP
601	111				2，993．60	12 EFP 13 FR GA	$22 \text { EMP }$
602	2		－－	－ーーー		29 CARPO	
						30 COMPO	ITE DECK
603	3 －	－－	－－	－－－－		31 WOOD	
604	－	－－	－－	－－－－		32 CANOP	
605	5					33 CONC／	PATIO
60		－－	一ー	ーーーー		34 STN／TL	
606	6 －	－－	－－	ーーーー		35 MS ／TER	
total attachment amount				\＄2，993．60		99 ADD＇L ATTACHMENT	

The last entry，or the 606 field，must be handled differently from those above．This entry is for additional attachments．It is a dollar value summary of any additional attachments not coded in 1 through 5 above．Each additional attachment should be listed on side 3，in the addi－ tional attachment area，by using an abbreviated written description．Each item must then be soundly valued utilizing the appraiser＇s best judgment of value．Cost tables are not provided for additional attachments．

The following example illustrates one appraiser＇s use of the additional attachments field．

ADDITIONAL ATTACHMENTS	AMOUNT
${ }^{1}$ Masonry flower box	
2 Built－in trash compactor	
3 （－）Att Gar．Adj．， 20 LF	
${ }^{4}$ Concrete driveway， 680 SF	
5	
6	
7	
8	
TOTALADDITIONALATTACHMENTS CARRY TOTALTO 606	

This appraiser listed a masonry flower box and a built－in trash compactor which，based on his best judgment and experience，he felt were worth and respectively．

It also lacks drywall interior finish on the common wall of the attached garage．From Page 3－76， the cost of $\quad \times 20$ linear feet $=$ a deduction of

Finally，the cost for the 680 square feet of concrete driveway from Page 3－76 must be added． 680 $x=$

The amounts were then totaled and the total，carried to the 606 field of the attach－ ment section．

TOTAL ATTACHMENT AMOUNT

Space is provided to enter the total of the dollar values entered in the attachment＇s category． For example，utilizing the preceding examples plus additional examples for illustration，the attachments section would look like the following：

ADDITIONAL ATTACHMENTS					
	1st	2nd	3rd	AREA	AMOUNT
601	$1 \underline{1} 1$				
602	223			400	
603	$3 \ldots 31$			60	
604	4 ＿－＿－		－	－ーーー	
605	5 －－－－		－	－－－－	
606	$6 \quad 99$			－ーーー	
	TOTAL ATTACHMENT AMOUNT				

ADDITIONAL ATTACHMENTS	AMOUNT
1 Masonry flower box	
2 Built－in trash compactor	
3 （－）Att Gar．Adj．， 20 LF	
${ }^{4}$ Concrete driveway， 680 SF	
5	
6	
7	
8	
TOTAL ADDITIONAL ATTACHMENTS CARRY TOTAL TO 606	

This attachment section shows an open frame porch on the first floor, 80 square feet in area, with a value of ; a masonry attached garage, 400 square feet in area, with a value of ; and a wood deck on the second floor, 60 square feet in area, with a value of
(The values for the coded attachments are taken from the cost table section of this manual.) Also shown is a 99 entry which is the total of the additional attachments found on side 3 of the property record card that had to be soundly valued. In this example positive (+) adjustments for the masonry flower box and built-in trash compactor, the attached garage common wall, and finally the positive adjustment (+) for the concrete driveway were totaled for an additional attachment total of
. The attachments were then totaled to

BASEMENT

Space is provided to enter the square footage of the basement area of the dwelling．When a base－ ment extends under an attachment such as an open or enclosed porch，this area should also be included．Enter the entire basement area，whether or not it is finished．

FIN BSMT LIV（Finished Basement Living Area）

Space is provided to enter the square footage of the basement area which is finished with a quality of materials and workmanship consistent with that of themain living area of the dwell ing－such as the lower or grade level of Raised Ranch or Split Level dwellings．To be included， rooms must be fully finished with interior walls，ceilings，and floor coverings，aswell as heating and electrical facilities in keeping with the rest of the dwelling．These rooms should also have larger than normal basement windows for good light and ventilation and should be intended for year－round occupancy．

LIVING AREAS				
570	575		580	
BSMT	ADD＇L FLOOR	－－－	ATTIC UNFIN	－－－
FIN BSMT LIV $\quad-$－	ATTIC FIN	－－	½ STORY UNFIN	－－
FIRST FLOOR	½STORY FIN	－－	UNFIN ROOM	－－－
SECOND FLOOR－－－－				

FIRST FLOOR

Space is provided to enter the square footage of all living area on the first floor of the dwelling．This area should not include any area which would be considered an attachment，such as a garage or porch．

Note：A sunroom or enclosed porch should be included if and only if it has a finished interior，and is heated and intended for year－round occupancy．

LIVING AREAS				
570	575		580	
BSMT	ADD＇L FLOOR	－－	ATTIC UNFIN	－
FIN BSMT LIV	ATTIC FIN	－	112 STORY UNFIN	－
FIRST FLOOR LIV	1122 STORY FIN	ーーーー	UNFIN ROOM	ーーーー
SECOND FLOOR－－－				

SECOND FLOOR

Space is provided to enter the square footage of living area on the second floor．A dwelling is usually considered to have a second story if the wall height at the eaves is 5 feet or more． When judging from exterior observation，if the roof line at the eaves is above the top of a full double－hung window，the house is a two story dwelling．（Please refer to the Appendix for story height illustrations．）

LIVING AREAS				
570	575		580	
BSMT－－－－	ADD＇L FLOOR	－－－	ATTIC UNFIN	－－－
FIN BSMT LIV	ATTIC FIN	ーーーー	$1 / 2$ STORY UNFIN	－ーー
FIRST FLOOR	$11 / 2$ STORY FIN	－－－	UNFIN ROOM	ーーーー
SECOND FLOOR				

ADDITIONAL FLOOR

Space is provided to enter the square footage of living area of a third floor．

ATTIC FINISHED

Space is provided to enter the square footage of the finished attic area．This square footage should be based upon the exterior dimensions of the attic floor．For example，a full finished attic on a 1,000 －square－foot house should be listed as 1,000 square feet in the first story entry and 1,000 square feet in the finished attic entry．

Note：If the attic space could be finished and utilized as living area，it is termed an attic in this manual．Any other attic space（i．e．，storage attics）which cannot be utilized as living area is not treated as an attic．This manual defines attics as having usable living area square footage equivalent to 50% of the attic exterior floor dimensions．（Please refer to the appendix for story height illustrations．）Stated another way， 50% of the area as listed in the finished attic entry is actual usable area．This representation has been designed as such to provide an efficient pricing procedure with a negligible compromise to the final property value estimate．
If，however，the actual square footage of attic finished area is known and you desire to price it as such，in order to employ the cost tables accurately，the known square footage must be doubled and listed in the finished attic area entry，and a note should be made on the card to that effect．（Remember that the costs for finished attic area have been calculated at 50% of the area listed．）

ONE-HALF STORY FINISHED

Space is provided to enter the square footage of finished area in a half story. This square footage should be based upon the exterior dimensions of the half story floor. For example, a full one-half story on a 1,000 -square-foot home should be listed as both 1,000 square feet in the first story entry and 1,000 square feet in the one-half story entry.

LIVING AREAS					
вडит		0024009	-		
${ }_{\text {ew sentuv }}$		atic fn		\%stor unew	
frst floor	1000	Sisory fin	1000	unem	----
SECONO Floor					

Note: For the purposes of this manual, half stories are defined as having usable square footage equivalent to 75% of the half-story exterior floor dimensions. (Please refer to the Appendix for story height illustrations.) Simply stated, 75% of the area as listed in the one-half story entry is actual usable area. This representation has been designed as such to provide an effi cient pricing procedure with a negligible compromise to the final property value estimate.

If, however, the actual square footage of half-story living area is known and you desire to price it as such, in order to employ the cost tables accurately, the known square footage must be multiplied by 1.33 and listed in the one-half story entry, and a note should be made on the card to that effect. (Remember that the costs for finished one-half stories have been calc lated at 75% of the area listed.)

ATTIC UNFINISHED

Space is provided to enter the square footage of unfinished attic area. The unfinished attic area entry is determined in the same manner as the finished attic entry, with the square footage based upon the attic exterior floor dimensions.

The example above shows an attic with one-half the area finished on a 1,000-square-foot house would have 1,000 square feet listed in the first floor area, 500 square feet listed in the finished attic area and 500 square feet in the unfinished attic area. The total attic floor area of 1,000 square feetwould be transferred to the dwelling computation area, and all attic structural components including finish would be priced. It is then necessary to deduct that finish which does not exist. This is accomplished by first adjusting the unfinished square footage to the actual available area. For attics, this adjustment figure is 50%; this procedure in our example would be to multiply the 500 square feet of unfinished area by 50%, yielding 250 actual square feet. The 250 actual square feet would then bemultiplied by the unfinished area cost per square foot adjustment to yield the total dollar deduction for that unfinished area. In the case of unfinished areas, the cost is not previously adjusted as with finished attic areas. It is necessary therefore to adjust the listed square footage by the 50% prior to costing.

Stated differently, the entire attic is priced as finished in order to include all structural components. Then, the amount attributable to the unfinished area is deducted. The remaining area is the actual square footage of finished attic.

ONE－HALF STORY UNFINISHED

Space is provided to enter the square footage of unfinished one－half story area．The unfin－ ished one－half story entry is determined in the same manner as the finished one－half story， with the square footage based upon the exterior dimensions of the half－story floor．

LIVING AREAS					
570		575		580	
BSMT	－	ADD＇L FLOOR	－－－	ATTIC UNFIN	－ 500
FIN BSMT LIV		ATTIC FIN	－ $50 \underline{0}$	1／2 STORY UNFIN	－50
FIRST FLOOR	1000	112 STORY FIN	ーー一ー	UNFIN ROOM	ーーー
SECOND FLOOR					

The example above，which shows a one－and－one－half story house with 1,000 square feet of ground area and half of the upper story finished，would be listed as 1,000 square feet in the first floor area， 500 square feet in the one－half story finished area and 500 square feet in the one－half story unfinished area．The total half－story area of 1,000 square feet $(500+500)$ would be transferred to the dwelling computation area，thereby pricing all half－story structur－ al components including finish．It is then necessary to deduct that finish which does not exist． This is accomplished by first adjusting the unfinished square footage to the actual usable area．For one－half stories，this adjustment figure is 75% ．This procedure in our example would be to multiply the 500 square feet of unfinished area by 75% ，yielding 375 square feet．The 375 actual square feet would then be multiplied by the unfinished area cost per square foot adjustment to yield the total dollar deduction for that unfinished area．In the case of unfinished areas，the cost is not previously adjusted as with finished half－story areas．It is necessary therefore to adjust the listed square footage by 75% prior to costing．
Stated differently，the entire attic is priced as finished in order to include all structural compo－ nents．Then，the amount attributable to the cost of finish is deducted．

UNFINISHED ROOM

Space is provided to enter the square footage of floor area of a portion of themain living area of the subject dwelling that has been left unfinished．An example would be a roomon the first floor planned for later finishing as a den，study or family room，or a room on the second floor planned for later finishing as a spare bedroom．If more than one such room exists，enter the total square footage of all unfinished rooms in this field．

LIVING AREAS				
570	575		580	
BSMT－－－－	ADD＇L FLOOR	－－－	ATTIC UNFIN	－－－
FIN BSMT LIV－－－－	ATTIC FIN	－－	1⁄2 STORY UNFIN	－－－
FIRST FLOOR	½ STORY FIN	ーーーー	UNFIN ROOM	\pm
SECOND FLOOR－－－－				

DWELLING COMPUTATIONS

The following is a step-by-step explanation of the general application of the residential dwelling pricing ladder utilizing the cost tables from this manual.

1. Enter the type of wall construction and square foot area for each floor level in the columns provided. Be sure to enter the total of finished and unfinished areas for attics and half stories.
2. Select the Square Foot Cost amounts from the cost tables of this manual for each level based on exterior wall construction and square foot area, and enter the amount in the appropriate value entry.
3. Add the value amounts obtained from the cost schedules for the following finished areas:
A. First Floor
B. Second Floor
C. Additional F loor
D. One-half Story
E. Attic
and enter the total in the base price area provided.
Note: The values above are taken from the cost table section of this manual. At this point, this figure implies that all areas above the basement are finished. Adjustments for unfinished areas are now necessary.
4. Unfinished Area: enter the floor square footage of unfinished areas-unfinished room, $1 / 2$ story unfinished and attic unfinished; adjust the unfinished area by the appropriate factor and sum the square footages for each; multiply the sum by the cost per square foot of unfinished area (square foot cost taken from the cost table of this manual); and enter the total as a negative adjustment in the unfinished value area provided.
5. Basement Adjustment: Space is provided to calculate the net basement adjustment when the size of the basement does not correspond to the first floor living area of the dwelling. Enter the actual basement, crawl and first floor area in the space provided. From the basement cost schedule, enter the appropriate dollar amount of each item as indicated in the examples below. Then total the column. This can be either a positive (+) or negative (-) adjustment, which is entered in the net basement adjustment area provided.

Example A: Full Crawl Area

An example of this pricing procedure is a dwelling with a 1,000-square-foot floor area and a full crawl space. The basement adjustment area would be tested as fo lows:
Basement Area
Crawl Area
First Floor Area
Net Basement Adjustment

$$
\begin{aligned}
0 & =+ \\
1,000 & =+ \\
1,000 & =- \\
& =-
\end{aligned}
$$

Example B:
This example has 1,000 square feet of first floor area with a 500 -square-foot crawl and 500 -square-foot basement. The basement adjustment area would be listed as follows:
Basement Area
Crawl Area
First Floor Area
Net Basement Adjustment

$$
\begin{aligned}
500 & =+ \\
500 & =+ \\
1,000 & =- \\
& =-
\end{aligned}
$$

Note: Dwellings with full basements require no adjustments.
6. Enter the square footage of finished basement living area and the price per square foot of finished basement living area (from the cost schedules) if applicable.Compute the cost and enter the amount in the area provided.
7. If the dwelling has no central heating system or if it does have central air conditioning, enter the total square footage of living area and select the appropriate amount (from the cost schedules) for the required adjustment. Be certain to adjust the $1 / 2$ story finished living area (as listed) by 75% and the finished attic area (as listed) by 50% prior to summing the living area for the adjustment.

Note: This can be either a positive or negative adjustment.
8. Enter the total number of plumbing fixtures. Subtract the standard complement of five fixtures. Multiply the remaining number of fixtures times the value per fixture (taken from the cost schedules of this manual) and enter the product in the plumbing value space provided.

Note: This can be either a positive or negative adjustment.
9. Enter the amount of the total other features value in the area provided.
10. Enter the amount of the total attachment value in the area provided.
11. Add the value amounts of the following:
A. Base Price
B. Unfinished Area
C. Basement Adjustment
D. Finished Basement Living Area
E. Heating/Air Conditioning
F. Plumbing
G. Total Other Feature Amount
H. Total Attachment Amount
and enter the total in the adjusted base price area provided.
12. Enter the appropriate quality grade factor and multiply the quality grade factor times the adjusted base price; enter the result in the area provided.
13. If applicable, enter the Cost and Design Factor and multiply that factor times the graded value; enter the result in the area provided.
14. Enter the appropriate local modifier, multiply the localmodifier times the last previous entry in the pricing ladder and enter the Replacement Cost New in the area provided.
15. Enter the appropriate CDU rating (from the dwelling percent good table) in the area provided and multiply the Replacement Cost New times the CDU rating, entering the result in the Replacement Cost New Less Depreciation area provided.
16. If applicable, enter the total Replacement Cost New Less Depreciation from the Other Building Improvements section in the area provided. (Other Building Improvements are addressed in another section.)
17. If applicable, enter the total Market Value from the Gross Building Summary in the area provided.
18. Then total the following value amounts:
A. Replacement Cost New Less Depreciation of the dwelling
B. Replacement Cost New Less Depreciation of the Other Building Improvements
C. Market Value of Gross Building Summary and enter the total for the Total Improvement Value in the space provided.

SIDE 3: OTHER BUILDING IMPROVEMENTS, ADDITIONAL OTHER FEATURES AND ATTACHMENTS AND APARTMENT DATA

OTHER BUILDING IMPROVEMENTS

This section provides guidelines for collecting and recording characteristics of additional structures which affect property value.

STRUCTURE TYPE CODES

Refers to a category of improvements such as pools, sheds, etc. The structure type code, therefore, stands for the overall structure itself and is made up of three parts. The first character stands for the overall property component with which the structure is associated.

$$
\begin{aligned}
& \mathrm{R}=\text { Residential } \\
& \mathrm{A}=\text { Agricultural }
\end{aligned}
$$

The second character in the structure type code stands for the structural category of the improvement. There are many of these, and several examples are listed below.

$$
\begin{aligned}
& \mathrm{G}=\text { Garage } \\
& \mathrm{S}=\text { Shed } \\
& \mathrm{P}=\text { Pool }
\end{aligned}
$$

The third character is numeric and distinguishes one type of structure from another within the same category. Two examples are listed below.

Structure Type Code	1st Character Meaning	2nd Character Meaning	3rd Character Meaning
RGI	Residential	Garage	Frame or CB
RG2	Residential	Garage	Brick, Stone or Log
RG3	Residential	Garage	Pole Frame

QUANTITY

This item refers to the number or quantity of like structures being listed.

CONSTRUCTION

This category refers to the general construction of the item being listed. Circle the appropriate construction type.

F - Denotes Frame/Concrete Block Construction.
M - Denotes Masonry/ Brick/ Stone/ Log Construction.
P - Denotes Pole Frame Construction
O - Denotes Construction other than Frame or Masony. An example would be a fiberglass pool.

YEAR

This entry refers to the year the item was constructed.

SIZE

Enter either the square foot area or the dimensions (width and length) of the item.
Space is provided to enter the square foot area of the item (up to 999,999 square feet). The square footage should be entered to the right.

To enter the dimensions, space is provided to enter the width or diameter, a multiplication symbol (X), and the length or height of the item. The multiplication symbol should be entered on the third character position from the left (within the two vertical hash marks).

GRADE

Space is provided to enter the quality grade of the item.
Note: Refer to the cost schedule section of this manual for applicable grades.

RATE

Space is provided to enter dollar and cent positions to denote the pricing rate utilized from the cost schedules for the item(s).

MODIFICATIONS

This topic refers to an addition or deduction to modify the cost complement tomatch the base specification. Modifications should only be utilized for the specific structure(s) intended. If more than one modification is necessary for a specific structure, they should be noted in the memorandum, totaled and the combined total dollar value modification listed in the Other Building Improvements under modifications.

SPECIAL MODIFICATIONS

This area refers to a special modification made to the cost component from the base specifications. Special modifications are also identified by three-character codes, similar to the structure codes. The difference between using special modification codes as opposed to structure type codes is that a special modification code necessitates a separate line entry immediately below the structure type code being modified. Other items necessary to describe the special modification must also be entered to allow for proper processing of the modification to an indication of value.

Note: Special modification codes should only be utilized for the specific structures intended.

LOCAL MODIFIER

Space is provided to enter the appropriate local modifier utilized in the jurisdiction.

REPLACEMENT COST NEW (RCN)

Space is provided to enter the calculated replacement cost new of the item(s) after application of the local modifier. Replacement cost new is defined as the current cost of replacing the improvement with a substitute improvement of equal utility.

COND.
Space is provided to enter one (1) alpha character denoting the overall condition of the item. Enter "E" for excellent, "G" for good, "A" for average, "F" for fair, "P" for poor, and "U" for unsound.

PERCENT (\%) GOOD

Space is provided to enter the percent good of the improvement being described. Percent good is defined as the resultant estimate of the diminishing value of an improvement after subtracting the amount of estimated depreciation from the Replacement Cost New. For example: a structure which is estimated to be 45 percent depreciated as of a given time has a percent good of 55. Therefore, depreciation and percent good are complements of each other.
Note: F or further explanation, refer to the Percent Good tables in this manual.

OBSOLESCENCE/MARKET ADJUSTMENT (OB/MA)

This area refers to the resultant value after deduction of functional obsolescence and deduction or addition of a market adjustment factor, expressed as a percentage.
Note: If this entry is utilized, it will function as a deduction or addition to the resultant value generated from the percent good entry.

REPLACEMENT COST NEW LESS DEPRECIATION (RCNLD)

This topic refers to the resultant value of the improvement after deduction of all forms of depreciation and/or the deduction or addition of a market adjustment factor.

To further explain the concept of Other Building Improvements, the following examples are provided:

RESIDENTIAL

1. Detached brick garage, $22^{\prime} \times 24^{\prime}$.
2. Metal utility shed, $12^{\prime} \times 20^{\prime}$.
3. Reinforced concrete pool, $16^{\prime} \times 32^{\prime}$, with electric heating, a diving board and four underwater lighting fixtures.

OTHER BUILDING IMPROVEMENTS															
	${ }_{\text {coin }}^{\text {TYPE }}$	ouan	const.	Year	sIZE	6	нят	Rate	modifications	LM	RCN	Cond	\%\%	овмя	RCNLD
701	RT_2	- 1	F(0) 50	1999	1-1-52 $\underline{8}$	C				-. g 8 O		2	75		
2	RS 2	- 1	Fmpso	$\underline{19} \underline{8}$	121-x $x_{1}-\frac{0}{3}$	-				-. 988		\underline{F}	30		
703		1	F(CP) 50	1995	${ }^{16} \underline{6}_{1} x_{1}-\underline{3} \underline{2}$	-				- 9 g ${ }^{0}$		A	35		
704	$\underline{s} \underline{1}$	1	fmpso	199 9	1-1---	-		-		- 9 880		-	35		
705	$\underline{S}{ }^{\text {Q }}$ 3	4	FMPso	1995	- ---	-		-		980			35		
706			Empso		---	-		-		- --		-			
707			Fmpso		--	-		--	----	- -		-			
708			EMPSO			-									
709	---		EMPSO		'_--	-						-			
710			Fmpso												

Note: For the reinforced concrete swimming pool, it is necessary to adjust the rate per square foot price to accommodate the modification adjustment for electric heating.

Note: For the special modifications of a diving board and underwater lighting fixtures, it is only necessary to enter the type code, quantity of each, Replacement Cost New after application of the localmodifier, percent good (same as the base structure type being described) and Replacement Cost New Less Depreciation.

RESIDENTIAL OTHER BUILDING IMPROVEMENT CODES

RESIDENTIAL CARPORTS AND GARAGES STRUCTURE TYPE CODES
RC1-Carport SF
RC2-Canopy SF
RC3 - Driveway, concrete SF
RC4 - Driveway, asphalt SF
RC5 - Driveway, gravel SF
RG1 - Frame or concrete block detached garage SF
RG2 - Brick, stone or log detached garage SF
RG3 - Pole frame detached garage SF
RESIDENTIALPOOLS STRUCTURE TYPE CODES
RP1 - Plastic liner pool SF
RP2 - Prefabricated vinyl pool SF
RP3-Reinforced concrete pool SF
RP4 - Fiberglass pool SF
RP5 - Gunite pool SF
RESIDENTIAL POOLS MODIFICATION CODES

1. No filter
2. Gas or propane heating
3. Electric heating
RESIDENTIAL POOLS SPECIAL MODIFICATION CODES
SP 1 - Diving board QTY
SP2-Chrome or steel ladder QTY
SP 3 - Underwater lighting QTY
RESIDENTIAL SHEDS STRUCTURE TYPE CODES
RS1 - Frame utility shed SF
RS2 - Metal utility shed SF

GROSS BUILDING SUMMARY \& TOTAL OTHER IMPROVEMENTS

This section is provided to list, price and summarize all buildings (improvements) other than those processed in DWELLING DATA and/or OTHER BUILDING IMPROVEMENTS. The data is entered into a series of columns allowing one line per item. The column entries are as fol lows:

ID

This refers to an alpha or numeric item identifier as it appears in the sketch.

USE

This entry refers to the present use of the item, i.e., tennis court, cabana, etc.

CONSTRUCTION

This refers to the story height and exterior wall construction of the item.

GRADE

This topic refers to the Quality Grade of the subject item.

AGE

Erected refers to the year the item was originally constructed; remodeled refers to the date of the last extensive remodeling-i.e., remodeling which significantly altered the "effective age" of the item.

Note: If the year is estimated, it should be followed by a plus and/or minus sign, i.e., $1932+/-$, 1900-, etc.; if the year submitted by the owner is questionable, it should be followed by a question mark, i.e., 1932?

SIZE

This refers to the dimensions, square foot area or volume of the item.

RATE

This is the unit value to be applied to the size in order to compute the Replacement Cost New of the item.

LOCAL MODIFIER

This item refers to the local modifier to be used in calculating the Replacement Cost New of the item.

REPLACEMENT COST NEW

This termrefers to the current cost of replacing the item with a substitute item of equal utility.

COND.

Space is provided to enter the overall condition of the item. Enter "E" for excellent, "G" for good, "A" for average, "F" for fair, "P" for poor and "U" for unsound.

PERCENT GOOD

This concept refers to the resultant value after deduction of physical depreciation from Replacement Cost New, expressed as a percentage.

OBSOLESCENCE/MARKET ADJUSTMENT

This term refers to the resultant value after deduction of functional obsolescence and deduction or addition of a market adjustment factor, expressed as a percentage.

MARKET VALUE

This refers to the actual value of the item.

TOTAL OTHER IMPROVEMENTS

Space is provided to enter a general description of the item or items described in the Gross Building Summary. All "Improvement Market Values" shown in the Summary should be to taled and entered in the area provided, denoting the total market value of all improvements other than those processed in the DWELLING Data and/or OTHER BUILDING IMPROVEMENT DATA.

PERSONNEL DATA

Space is provided to enter the name or number and the date of the person measuring, listing, calculating and reviewing the property data.

ADDITIONAL OTHER FEATURES

S ee the instructions for other features entries on Page 2 of the property record card.

ADDITIONAL ATTACHMENTS

S ee the instructions for attachments entries on Page 2 of the property record card.

APARTMENT DATA

See "Apartments, 2 to 7 units" in this manual for apartment data listing instructions.

NOTATIONS AND PHOTOGRAPH

Space is provided for any notations pertinent to the subject property. Space is also provided to attach a photograph of the subject property.

SIDE 4: OWNERSHIP, PARCEL IDENTIFICATION AND LAND DATA

OWNERSHIP

BUILDING PERMIT RECORD

Space is provided to record building permit data as required. The data entered in this section should include: the issuance date of the permit, the appropriate permit number and the amount and purpose of the permit. This data is useful in the valuation process-i.e., determining remodeling, new construction of building additions, etc.

PROPERTY IDENTIFICATION

The upper right hand portion of the Property Record Card is reserved for entering the parcel identification information utilized by the taxing jurisdiction. Property identification must be entered for each parcel. The property identification will be the key to establishing a file of all property and is utilized for file maintenance.

MAP NUMBER

Space is provided to enter the alpha and/or numeric characters used to denote the division of properties generally defined on an individual tax map.

ROUTING NUMBER

Character positions are provided to enter three numeric characters ranging from 001 to 999 to the left of the vertical hash mark and two numeric characters ranging from 01 to 99 to the right of the vertical hashmark denoting a sequential routing number assigned to each parcel of property. The character positions to the right of the hashmark are provided to facilitate the identification of property splits, the first split from a property being identified as 01, the second as 02 , etc.
Note 1: This entry should be utilized when a jurisdiction's mapping system is deemed inadequate to account for all parcels and/or inadequate to facilitate an easy property by property inspection of all parcels.

Note 2: For parcels requiring multiple card listing, the same routing number must be entered on each card.

CARD NUMBER

Character positions are provided to enter two sets of two numeric characters each. The last two positions are reserved to enter the total number of cards required to list the parcel, and the first two positions are reserved to enter the sequential number assigned to each particular card: i.e., for parcels requiring one card, enter 01 of 01 ; for parcels requiring two cards, enter 01 of 02 on the first card and 02 of 02 on the second card; for three cards, 01 of 03,02 of 03 , and 03 of 03 , etc., up to 01 of 99 and 99 of 99 . For record-keeping purposes, a card number should be entered on every card.
When listing a parcel requiring multiple cards, it is generally necessary for the data collector to insert the additional card(s) in the field. The owner's nameand the permanent parcel identification data, along with any other information specified, should be entered on each of the additional cards.

NEIGHBORHOOD

Character positions are provided to enter three numeric characters ranging from 001 to 999 to the left of the vertical hash mark to denote a specific neighborhood identification number. A character position is provided to the right of the vertical hash mark to enter an additional digit, 1 to 9 , to denote the creation of a subneighborhood within a neighborhood subsequent to the initial neighborhood delineation. For example: Neighborhood 200 is being redefined as Neighborhood 200/1 and 200/2. If the subject property's neighborhood identification number does not include the subneighborhood, simply leave it blank. A neighborhood maybe defined as a geographical area exhibiting a high degree of homogeneity in residential amenities, land use, economic trends, and housing characteristics, such as structural quality, age and condition.

LAND USE

Character positions are provided to enter a three-digit numeric code denoting the present use of each particular parcel of land. A land use code should be entered on all cards. In the case of multiple uses on the same parcel, enter the land use code which is predominant. Ifmultiple cards are used to list the parcel, enter the land use code which is most representative of the improvements listed on that particular card.
Note: Appropriate land use codes may be found in the appendix of this manual.

LIVING UNITS

Three character positions are provided to denote the number of living units which exist in the subject dwelling. Enter the number of living units.
A living unit is defined as any room or group of rooms designed as the living quarters of one family or household, equipped with cooking and toilet facilities and having an independent entrance from a public hall or from the outside.

Note: A single-family residence contains one (1) living unit.

ZONING

Character positions are provided to enter up to six alpha and/or numeric characters denoting "local" zoning symbols. A bracket is provided to enter a check mark [\checkmark] to denote that the property does not conform to local zoning regulations.

PROPERTY LOCATION

Twenty-four character positions are provided to enter alpha and numeric characters denoting the existing property address. This may include any combination of street number, street direction, and street name. If there is no street number, leave this space blank. Always enter street, road, or route number in the street name area.
Note: The property address is not necessarily the same as the mailing address.

SALES DATA

TRANSFER OF OWNERSHIP

Space is provided to record ownerships which are subsequent to the present ownership. The data entered in this section should include the name or names of the grantee, the conveyance, and the volume and page number identifying where the original transfer document is recorded.

Space is provided to enter the data for three sales. The data is arranged in vertical columns. All the data should be listed in order of occurrence, allowing one line for each sale.

DATE

Character positions are provided to enter the number of the month and the last two digits of the year of the sale.

UNIQUE SALES NUMBER

Space is provided to enter the five-digit unique sales number assigned to the real estate transfer form by the Department of R evenue.

TYPE

This entry refers to the distinction between a type of sale involving LAND ONLY as opposed to a sale involving both LAND \& BUILDINGS. Enter the numeric code which is representative of the sale.

Enter 1: LAND to indicate that the sale involved land only.
Enter 2: LAND \& BUILDINGS to indicate that the sale involved both land and buildings.

Note: For building only sales on leased land, enter 2.

SALE PRICE

Space is provided to enter the sale price.

SOURCE

The category refers to the source of the sales data entered in this section. Enter the numeric code which is representative of the source.

Enter 1 BUYER to indicate that the information was obtained from the grantee, or buyer.

Enter 2 SELLER to indicate that the information was obtained from the grantor, or seller.

Enter 3 FEE to indicate that the information was obtained from conveyance fee, or similar transfer records.

Enter 4 AGENTto indicate that the information was obtained from an agent representing the current owner.

SALES VALIDITY CODES

This entry refers to the verification of available sales data. Enter the numeric code which is most representative of the validity of the sale.

Enter 1 to indicate that the sale can be considered a valid "arm's length" transaction for validity purposes.

Enter 2 to indicate that the sale involved more than one parcel.
Enter 3 to indicate that the property was not exposed to the open market or that the marketing time on the property could be considered abnormal.

Enter 4 to indicate that either one or both of the parties in the transaction were acting under any form of duress or coercion.

Enter 5 to indicate that the highest and best use of the property has changed since the sale or that construction and/or demolition of improvements has taken place after the transaction occurred.

Enter 6 to indicate that the parties of the transactionwere either related or individuals of corporations.
Enter 7 to indicate that the cause of the transaction was either a liquidation of assets or a foreclosure of a mortgage.

Enter 8 to indicate that the sale involved abnormal financing or that the transaction was a land contract arrangement.

Enter 9 to indicate that the sale included an excessive amount of personal property or any other situation that would make the sale not an "arm's length" transaction.

Note: All of the sales data fields are required if a sales entry is made.

LAND DATA \& COMPUTATIONS

There are five categories of land entries: NONE, LOTS, SQUARE FEET, ACREAGE and GROSS. Each category is designated by a descriptor. The descriptors are N, L, S, A and G, respectively.

Each category comprises a number of coded land type descriptions, such as Primary Site, Secondary Site, etc.

Each entry is preceded by a descriptor. In the same column, immediately following the descriptor, is a space to enter the code number of the land type (within the category) involved in that particular entry. As an example, a regular lot would have a descriptor of L and a code entry of 1 to indicate a regular lot as in the sample entry below.

NONE

Use this field for computations on sales involving no land. Enter the code number 0.

LOTS

Use this field for all Lot and Apartment Site computations. Enter the proper code number (1 to 4 inclusive). Complete the remaining corresponding areas as indicated below. Space is provided for four (4) entries.

REGULAR, REAR, WATERFRONT

Enter the code number 1, 2 and/or 4. Complete the corresponding areas of each entryactual frontage, effective frontage, effective depth, actual unit price (price per front foot) and depth factor expressed as a percent.

Note: Refer to the appendix of this manual for depth factor tables. Land Computations are based on the following:

Effective Frontage \times Actual Unit Price \times Depth Factor $=$ Land Value
Note: Effective frontage and effective depth are determined by applying the lot sizing proce- dures found in the appendix of this manual.

Note: All character positions in actual frontage, effective frontage and effective depth should be filled in for more effective record keeping.

LAND DATA \& COMPUTATIONS										
NONE	300	N-	ACTUAL FRONTAGE	EFFECTIVE FRONTAGE	$\begin{gathered} \text { EFFECTIVE } \\ \text { DEPTH } \end{gathered}$	actual unit price	$\begin{aligned} & \text { DEPTH } \\ & \text { FACTOR } \end{aligned}$	INFLUENCE FACTOR	$\begin{array}{\|l\|} \text { LAND } \\ \text { USE CODE } \end{array}$	land value
LOTS 1 Regular lot 2 Rear lot 3 Apartment site 4 Waterfront	301	L1	176. 5	177	15 0		1.06			75,048
	302									
	303									
	304									

Use this part of the form for square foot computations. Enter the proper code number (1 to 4 inclusive). Complete the remaining corresponding areas-square foot size and unit price. Space is provided for three entries. If additional entries are required, use an additional property record card.

Land computations are based on the following:
Square Footage \times Actual Unit Price $=$ Land Value

LAND DATA \& COMPUTATIONS										
NONE	300	N	ACTUAL FRONTAGE	EFFECTIVE FRONTAGE	$\begin{gathered} \text { EFFECTIVE } \\ \text { DEPTH } \end{gathered}$	actual unit price	DEPTH \| FACTOR	influence FACTOR	$\begin{aligned} & \text { LAND } \\ & \text { USE CODE } \end{aligned}$	land value
SQUARE FEET 1 Primary site 2 Secondary site 3 Residual 4 Waterfront	311 312 313	$\begin{aligned} & \mathrm{s} \underline{2} \\ & \mathrm{~s}- \\ & \mathrm{s}- \end{aligned}$		$\begin{aligned} & 0,0 \\ & -1-- \\ & -1-- \end{aligned}$			Influence Factors 1 Unimp 2 Exc Fr 3 Topo	$\begin{aligned} & 3-4[1] \underline{2} 0 \\ & --[1]--[1]- \end{aligned}$	- 一	38,400

ACREAGE

Use for acreage computations. Enter the proper code number (0 to 9 inclusive). Complete the remaining corresponding areas-acreage size, productivity rating and unit price. Space is provided for six entries. If additional entries are required, use an additional property record card.

Land computations are based on the following:
Acreage \times Actual Unit Price $=$ Land Value

LAND DATA \& COMP UTATIONS									
NONE	300	N	ACTUAL EFFECTIVE FRONTAGE FRONTAGE	EFFECTIVE DEPTH	ACTUAL UNIT PRICE	DEPTH FACTOR	INFLUENCE FACTOR	LAND USE CODE	LAND VALUE
ACREAGE	321	A 5	--1. 2 5 ACRES	PROD RTG	-1500	4 Shape or Size	-	512	625
1 Homesite 2 Tillable	322	A	ACRES	- -	-_ \quad - _-	5 Econ Misimp]		
3 Pasture 4 Woodland	323	A	ACRES	- -	$-\ldots-\ldots$	6 Restric Noncon]		
5 Undev 6 Primary site 7 Secondary site	324	A	__- _ ACRES		$-\ldots-\quad 1 \quad-$	7 Land Locked	\qquad] \qquad		
8 Residual 9 Waterfront 0 Other	325	A	\qquad ACRES	-	\qquad	$\begin{aligned} & 8 \text { Corner } \\ & \text { Alley } \\ & (+) \end{aligned}$	\qquad]		
	326	A	$\text { __- } \quad \text { _ ACRES }$	_	$-\ldots$	$\begin{aligned} & 9 \text { View } \\ & (+) \end{aligned}$	$-[\quad[\quad]$	-1	

PRODUCTIVITY RATING

The Department of Revenue will provide, on request, the productivity ratings and instructions in their use, to counties with detailed soil surveys.

GROSS

Use to 1) site value Irregular Lots, Residual Land, Waterfront and any other such sites for which you cannot or do not wish to show computations; or 2) make a gross value deduction for utility, rights of way and other similar property obstructions, (code 0). Enter the proper code number. Enter the gross sound value. Space is provided for one entry.

Note: The total gross value in this entry should be added to or deducted from the other land entries in arriving at the total Land Value. Codes 1 to 4 inclusive can be used without other
land entries. However, accurate record keeping is lost when this field is used as the only land entry. Therefore, it should be utilized with discretion. Code 0 can only be used with other land entries, and providing that the total amount deducted does not exceed the sum of the other entries. In the following example, the total value of the land is the sum of the four entries described.

					ND DATA \&	OMPUTATIONS					
none	300	N-	${ }_{\text {FRentage }}^{\text {Actual }}$			actual unit price		$\underset{\substack{\text { NTFLUENCE } \\ \text { FACTOR }}}{\text { den }}$			
Lots 1 Regular lot 2 Rear lot 4 Waterfront sit 4 Waterfron	301	$\left[\begin{array}{l} \mathrm{L} \underline{1} \\ \llcorner- \\ \llcorner- \\ \llcorner- \end{array}\right.$		177	159		1.06			75,048	
	302										
	303										
	304										
SQUARE FEET 1 Primary site 2 Secondary site 3 Residual 4 Waterfron	311	$\begin{aligned} & \mathrm{s}_{2} \underline{2} \\ & \mathrm{~s}- \\ & \mathrm{s}- \\ & \hline \end{aligned}$				$\begin{aligned} & --2 \cdot \underline{4} 0 \\ & --\cdots \cdot-- \end{aligned}$		$34112 \underline{0}$	--	38,400	
	312										
	313					_-_1					
ACREAGE 1 Homesite 2 Tillable 3 Pasture 4 Woodland 5 Undev 7 Secondary site 8 Residual 9 Waterfro 0 Other	321	A $\underline{5}$ A A - A A - A -		5 acres	Prod rTG			$-\ldots 1500$	-	512	625
	322		$\underline{1}$	- - -acres	-				-- ${ }^{1} 1$ -	---	
	323		__- _ _ACRES		- -						
	324				- -	-'---		d			
	325		--- - - ACRES					+			
	326		-_- - _acres								
GROSS 1 Irregular lot 2 Site value 3 Residual 0 Minus R.O.W O Minus R.O.W	330	G 1	$---1-\underline{2}, \underline{0} 0 \underline{0}$				Summary of values				
							total val	e land		116,073	
							total val	alue building			
							total valued	ue Land \& blogs			

INFLUENCE FACTORS

Each land entry with the exception of the "Gross" entry provides two character positions for entering up to two, separate one-digit influence factor codes, a bracket in which to enter either a plus orminus symbol, and two character positions to enter the corresponding influence factor as a percentage to be added to (plus) or deducted from (minus) the calculated land value for each entry. Up to two (any combination of two) influence factors may be used with each entry. In entries where a single factor is used, enter the factor in the first character position to the left and leave the second character position blank.

Enter 1 [-] to indicate comparative value loss attributable to a lack of improvements.
Enter 2 [-] to indicate comparative value loss attributable to excessive frontage in relation to utility.

Enter 3 [-] to indicate comparative value loss attributable to topographical features.
Enter 4 [-] to indicate comparative value loss (over and above the adjustment considered in lot sizing procedures) attributable to the shape or size of the lot in relation to its utility.

Enter 5 [-] to indicate comparative value loss attributable to economic misimprovement (either underimprovement or overimprovement) of the site.

Enter 6 [-] to indicate comparative value loss attributable to restrictions regulating its use.

Enter 7 [-] to indicate comparative value loss attributable to the site being landlocked.

Enter 8 [+] to indicate comparative value- enhancement attributable to corner and/or alley influence.

Enter 9 [+] to indicate comparative value enhancement attributable to the capability of the site to provide an appealing and desirable view.

LAND DATA \& COMPUTATIONS										
NONE	300	N	$\begin{aligned} & \text { ACTUAL } \\ & \text { FRONTAGE } \end{aligned}$	EFFECTIVE FRONTAG	$\begin{aligned} & \text { EFFECTIVE } \\ & \text { DEPTH } \end{aligned}$	actual unit price	$\begin{aligned} & \text { DEPTH } \\ & \text { FACTOR } \end{aligned}$	INFLUENCE FACTOR		land value
LOTS 1 Regular lot 2 Rear lot 3 Apartment site 4 Waterfront	301	L 1	-10.0	100	150	--1400	. 82	$9{ }_{[+]} 20$		39,360
	302	$\begin{aligned} & \mathrm{L} \underline{1} \\ & \mathrm{~L}- \\ & \mathrm{L}- \end{aligned}$	176.5	177	150	--1150	1.06	- $\underline{1}_{[-1} 15$	-_-	23,922
	303					- '		[] -		
	304			-	-	- - 1 - -				

The example shows that the first land entry was enhanced twenty percent because it had a great view; the second entry indicates a fifteen percent loss due to lack of sewer and water.

LAND USE CODE

Character positions are provided to enter a three-digit numeric code denoting the present use of each entry of land that deviates or is an exception to the predominant land use code entered in field 102-Land Use. If no entry is necessary, simply leave the field blank.
Note: Refer to the appendix of this manual for the appropriate land use codes.

PROPERTY FACTORS

TOPOGRAPHY

This entry refers to the topographical features of the subject property. Seven alternatives are provided. Enter a checkmark [\checkmark] in the space provided to the immediate right of the numerical code which ismost representative of the subject property. Only one code maybe checked. This code reflects the predominant topographical feature of the subject property.

Check 1 LEVEL to indicate the subject property is level to the access street.
Check 2 ABOVE STREET to indicate the property is above the street level.
Check 3 BELOW STREET to indicate that the property is below the street level.
Check 4 ROLLING to indicate the property comprises many small hills.
Check 5 STEEP to indicate the property has excessive grade as compared to the access roadway.
Check 6 LOW to indicate the property has a low terrain.
Check 7 SWAMPY to indicate wet, spongy land, marsh or bog.

Additional topographical features may be indicated by writing in the left hand margin the percentage of the total parcel represented by each feature. As the sample below shows, the major topography of the parcel is level, indicated by the check mark after the numeric identifier of 1 for level. The left hand margin shows the percentage entries: 60% is level, 20% is rolling and 20% is swampy.

400			
	TOPOGRAPHY		
60\% LEVEL		1	\checkmark
	ABOVE STREET	2	
	BELOW STREET	3	
20\% ROLLING		4	
	STEEP	5	
	LOW	6	
20\% SWAMPY		7	

UTILITIES

This topic refers to services which are available to the property. These can be private or public. Six alternatives are available, and any number of codes may be checked. Enter a checkmark [\checkmark] in the space provided to the immediate right of the numerical codes which aremost representative of the subject property.

Check 1 ALL PUBLIC to indicate all public utilities to include water, sewer, gas and electric are available.
Check 2 PUBLIC WATER to indicate public water is available to the property.
Check 3 PUBLIC SEWER to indicate public sewer is available to the property.
Check 4 GAS to indicate that natural gas is available to the property.
Check 5 WELL to indicate that the only water available to the property is a private well.
Check 6 SEPTIC to indicate only private sewer (septic tank) is available to the property.
Note: If code 1 is checked, no other code or combination of codes should be checked.

STREET OR ROAD

This category refers to the primary fronting street or the street providing the most immediate access to the subject property and the features which exist at the property. Enter a checkmark [\checkmark] in the space provided to the immediate right of the numerical codes which are representative of the subject property. Six (6) alternatives are provided. Only one (1) entry should be made for codes 1 through 5.

Check 1 PAVED to indicate concrete, blacktop or a comparably surfaced street.

Check 2 SEMI-IMPROVED to indicate a gravel or comparably semi-improved street.

Check 3 UNPAVED to indicate

Check 4 PROPOSED to indicate that a street or road does not actually exist but is planned (and approved) for the future. This is commonly referred to as a paper road.

Check 5 LANDLOCKED to indicate a property without access to any type of street or road.

Check 6 SIDEWALK to indicate the presence of a paved sidewalk available for public use.

DWELLING SETBACK

This topic refers to the amount of setback (in feet) from which a dwelling is separated from its primary fronting street or most immediate access way, and its relationship to other dwellings in the neighborhood. Three (3) alternatives are provided. Enter a check mark [\checkmark] in the space provided to the immediate right of the numerical code which is most representative of the subject property. Only one (1) code should be checked.

Check 1 MORE THAN NEIGHBORHOOD AVERAGE to indicate that the subject dwelling is situated significantly farther back from its primary fronting street when compared with others in the neighborhood.

Check 2 SAME AS NEIGHBORHOOD AVERAGE to indicate that there is no significant difference in the setback of the dwelling when compared with others in the neighborhood.

Check 3 LESS THAN NEIGHBORHOOD AVERAGE to indicate that the subject dwelling is located significantly closer to its primary fronting street when compared with others in the neighborhood.

Note: If the property has no dwelling, leave this entry blank.

FRONTING TRAFFIC

This subject refers to the volume of vehicular traffic on the street fronting the subject property. Five (5) alternatives are provided. Enter a checkmark [\checkmark] in the space provided to the immediate right of the numerical code which is most representative of the subject property. Only one (1) code should be checked.

Check 1 LIGHT to indicate a negligible volume of traffic, peaking at a level which is typical of residential neighborhood ingress and egress and causing no significant degree of traffic hazards and nuisance.

Check 2 MEDIUM to indicate a significant volume of traffic comparable to that found on main interneighborhood thoroughfares, and causing some degree of traffic hazards and nuisance.

Check 3 HEAVY to indicate a heavy volume of traffic comparable to that found on main ingress and egress arteries connecting residential neighborhoods to primary centers of activity, and causing a significant degree of traffic hazards and nuisance.

Check 4 NONE to indicate no traffic.
Check 5 CUL-DE-SAC to indicate a street open at one end only, having an enlarged turnaround area at the enclosed end.

OWNERSHIP

This issue involves the type of present ownership of the subject property. Nine (9) alternatives are available. Enter a check mark $[\checkmark]$ to the right of the numerical code which is most representative of the subject property. Only one code should be checked.

Check 1 PRIVATE if the property is privately owned by an individual or individuals.
Check 2 CITY if the property is owned by the city government.
Check 3 COUNTY if the property is owned by the county government.
Check 4 STATE if the property is owned by the state government.
Check 5 FEDERAL if the property is owned by the federal government.
Check 6 RELIGIOUS if the property is owned by a religious organization.
Check 7 FRATERNAL if the property is owned by a fraternal organization.
Check 8 UTILITY if the property is owned by a public utility company.
Check 9 PUBLIC SERVICE if the property is owned by a public service organization.

ENTRANCE CODES

This field refers to the type and ability of contact made with the occupant of the subject dwelling. Seven (7) alternatives are available. Enter the numeric code which is most representative of the type and ability of contact. Space is also provided for the responsible occupant from whom the information was obtained, to sign the Property Record Card, verifying that the property was inspected.

LAND OR IMPROVEMENT (L or I)

Space is provided to enter either L (Land) or I (Improvement), denoting whether the change in the assessment roll was made to land or improvements.

PLUS OR MINUS (+ or -)

Space is provided to enter either a plus (+) or aminus (-) sign, denoting whether the change in the assessment roll was positive or negative.

AMOUNT

Space is provided to enter the amount of change to the assessment roll.

DEACTIVATE

Space is provided to enter the four digits of the year when a parcel is to be removed from the assessment roll, as in the cases of annexation by another taxing authority. However, in the current year it will not be removed from the file until after the Assessor's Final Report is produced.
SELECTING THE PROPER QUALITY GRADE 3-1
APPLYING THE PROPER QUALITY GRADE 3-3
APPLYING THE PROPER COST AND DESIGN FACTOR 3-4
Base Specifications: Grade AA Residences 3-5
Photographs: Grade AA Residences 3-6
Base Specifications: Grade A Residences 3-7
Photographs: Grade A Residences 3-8
Base Specifications: Grade B Residences 3-14
Photographs: Grade B Residences 3-15
Base Specifications: Grade C Residences 3-31
Photographs: Grade C Residences 3-32
Base Specifications: Grade D Residences 3-55
Photographs: Grade D Residences 3-56
Base Specifications: Grade E Residences 3-63
Photographs: Grade E Residences 3-64
DWELLING PRICING SCHEDULE 3-65
General Application 3-65
Special Application 3-65
Large Residence Multipliers 3-67
Frame Base Prices 3-68
Masonry Veneer Base Prices 3-69
Concrete Block Base Prices 3-70
Brick or Stone Base Prices 3-71
Rustic Log Base Prices 3-72
Hand-Hewn Log Base Prices 3-73
Base Price Adjustments 3-74
Attachments 3-75
Detachments 3-76
Residential Swimming Pools 3-77
Residential Greenhouses 3-77
Solar Heating Systems 3-78
Unique Residence Types 3-79
Wind Energy Systems 3-79
Special Listing Instructions 3-79
Percent of Completion 3-80
Mobile Homes 3-81
Mobile Homes Dwelling Pricing Schedule 3-91
Large Residence Multipliers (Executive Homes) 3-92
Executive Homes 3-93
Executive Homes Dwelling Pricing Schedule: Frame 3-113
Executive Homes Dwelling Pricing Schedule: Masonry Veneer 3-114
Executive Homes Dwelling Pricing Schedule: Concrete Block 3-115
Executive Homes Dwelling Pricing Schedule: Brick or Stone 3-116
Executive Homes Dwelling Pricing Schedule: Base Price Adjustments 3-117
Yard Improvements 3-118
Boat Storage 3-122
Water Wells/ Disposal 3-123

The quality grade of materials and workmanship is the one most significant variables to be considered in estimating the replacement cost of a structure. Two buildings may be built from the same general plan, each offering exactly the same facilities and with the same specific features, but with widely different costs due entirely to the quality of materials and workmanship in their construction. For instance, the cost of a dwelling constructed of high-quality materials and with the best workmanship throughout can be more than twice that of one built from the same floor plan but with inferior materials and workmanship prevailing.

The schedules included in this manual have been developed to provide the appraiser with a range of grades comprehensive enough to distinguish all significant variations in the quality of materials and workmanship which may be encountered; the basic specifications for each grade as to the type of facility furnished remain relatively consistent throughout, and the primary criterion for establishing the grade is the overall quality of materials and workmanship prevailing.

The majority of buildings erected fall within a definite class of construction, involving the use of average-quality materials with average-quality workmanship. This type of construction being the most common, it can readily be distinguished by the layman as well as the professional appraiser. Consequently, better- or inferior-quality construction can be comparatively observed. The quality grading system and pricing schedules in this manual are keyed to this obvious condition; the basic grade being representative of that cost of construction using average-quality materials with averagequality workmanship. The four principal Quality Grade classifications are as follows:

Grade A . Excellent Quality
Grade B . Good Quality
Grade C . Average Quality
Grade D . Fair Quality
To cover the entire range of construction quality, two additional Quality Grade classifications must be established: AA Grade, incorporating the very best quality materials and workmanship, and E Grade, incorporating materials and workmanship of the cheapest and most inferior quality.

The six established grades or classes of quality discussed above will cover the entire range of dwelling construction from the cheapest to the finest quality. The general quality specifications for each grade follow:

AA GRADE: Buildings generally having an outstanding architectural style and design, constructed with the finest-quality materials and workmanship throughout. Superior-quality interior finish and built-in features. Deluxe heating system and high-grade plumbing and lighting fixtures.

A GRADE: Architecturally attractive buildings constructed with excellent-quality materials and workmanship throughout. High-quality interior finish and built-in features. Deluxe heating system and very good grade plumbing and lighting fixtures.

B GRADE: Building constructed with good-quality materials and above average workmanship throughout. Moderate architectural treatment. Goodquality interior finish and built-in features. Good grade heating, plumbing and lighting fixtures.

C GRADE: Buildings constructed with average-quality materials and workmanship throughout, conforming to the base specifications used to develop the pricing schedule. Minimal architectural treatment. Average-quality interior finish and built-in features. Standard grade heating, plumbing and lighting fixtures.

D GRADE: Buildings constructed with economy-quality materials and fair workmanship throughout. Void of architectural treatment. Cheap-quality interior finish and built-in features. Low grade heating, plumbing and lighting fixtures.

E GRADE: Buildings constructed with a very cheap grade of materials, usually culls and seconds, and very poor quality workmanship resulting from unskilled, inexperienced, do-it-yourself type labor. Low grade heating, plumbing and lighting fixtures.

By assigning the factor 1.00 to C Grade construction, the other factors either above or below C Grade can be illustrated as follows:
\qquad
AA Grade 2.50

A Grade . 1.55
B Grade . 1.28
C Grade . 1.00
D Grade . 0.85
E Grade . 0.55
In order to facilitate using this grading system, and again to promote and maintain uniformity in approach, the value relationship of grade to grade as described above has been incorporated into the development of the base specifications relating to each schedule used in the manual

Note: The appraiser must exercise extreme caution not to confuse the concepts "quality" and "condition" when selecting the proper grade. This is especially applicable to older buildings, wherein a deteriorated condition can have a noticeable effect on physical appearance. A building will always retain its initial grade of construction, regardless of its existing deteriorated condition. The Quality Grade ultimately selected must reflect that original built-in quality, and the selection of that grade cannot be influenced in any way by the physical condition of the building.

Grading would be a relatively simple process if all buildings were built to conform to the quality grade specifications outlined above. The fact is, however, that this ideal condition does not exist. It is not unusual for any conventional building to incorporate construction qualities that fall between the established grade levels. The grading system in this manual has been designed in such a way as to provide the appraiser with a method for accounting for such variations by establishing intermediate grades.

If the subject building is judged to be of a better or inferior quality compared to these actual grade levels, a grade factor of plus (+) or minus (-) should be applied; i.e., C+ would be better than a straight C Grade, B- poorer than a straight B Grade, etc.

Following these procedures results in the full range of Quality Grade Factors, which are listed below:

AA Plus (+)	2.75	C Plus (+)	1.10
AA	2.50	C	1.00
AA Minus (--)	2.00	C Minus (--)	0.95
A Plus (+)	1.75	D Plus (+)	0.90
A	1.55	D	0.85
A Minus (--)	1.45	D Minus (--)	0.75
B Plus (+)	1.35	E Plus (+)	0.65
B	1.28	E	0.55
B Minus (--)	1.20	E Minus (--)	0.45

Note: The quality factor ultimately selected is to represent a composite judgment of the overall Quality Grade. Generally, the quality of materials and workmanship is fairly consistent throughout the construction of a specific building; however, since this is not always the case, it is frequently necessary to weight the quality of each major component in order to arrive at the proper overall Quality Grade. Equal consideration must also be given to any attachments which are constructed of materials and workmanship inconsistent with the quality of the main building.

Note: The new Executive Residence section of this pricing manual, starting on Page 3-92, will have the appropriate pricing for these upscale dwellings. When the factor above is applied to the base dwelling pricing (Pages 3-68 to 3-73), the resulting prices can approach the Grade E executive Residence prices. If this occurs, the valuator should consider whether or not to use the price from the Executive Residence section.

Architectural fees, material quantities, labor efficiency and other factors influencing total construction costs may vary considerably from one building to another depending upon the particular design. For instance, two dwellings showing no marked difference in size or quality may still show a measurable difference in cost, attributable primarily to a difference in design.

In computing the replacement cost of any building, therefore, it is necessary to adjust the cost to account for any features varying significantly from the base specifications from which the pricing schedules were developed.

The pricing schedules included in this manual, unless otherwise specified, have been developed to reflect perimeter-to-area wall ratios of rectangularly shaped buildings, uniform eave lines and roof slopes, overhangs, ceiling heights and other architectural features most typical of conventional designs.

The adjustment for variations in design must be made by applying a Cost and Design Factor denoting a percentage adjustment of the subtotal replacement cost, i.e., apply a $+5 \%$ to indicate a 5% increase in the replacement cost, apply a $+10 \%$ to indicate a 10% increase, etc.

The Cost and Design Factors applicable to dwellings will normally range from 0 to 15%. However, the Cost and Design Factors applicable to special architectural designs may range considerably higher. The selection of the proper Cost and Design Factor is largely a product of the experience and sound judgment of the appraiser. The appraiser must have the ability to analyze various construction components and determine the influence of each upon the overall cost.

Dwellings constructed of the finest-quality materials and workmanship, exhibiting unique and elaborate architectural styling and treatment and having all the features typically characteristic of mansion-type homes.

FOUNDATION

Masonry walls, waterproofed; reinforced concrete footings, drain tile. Full basement.

EXTERIOR WALLS

Shake shingles; cedar or redwood siding; stucco or synthetic plaster on rigid insulation (EIFS); half timbers; bevel siding; face brick or native stone veneers; hand-hewn or oversized logs; stucco, common or face brick, stone or ashlar granite over concrete block; or solid brick. Framing will consist of 2 " $\times 6$ " wood or $6^{\prime \prime}$ steel studs, $16^{\prime \prime}$ o.c., for the walls, with $1^{\prime \prime}$ D\&M sheathing, Finest-quality solid-core exterior doors and wood, metal or vinyl windows. Three coats of exterior paint or stain. All doors and windows weather-stripped with wall insulation (see Energy Package below).

ROOF

Gable, hipped or gambrel type, heavy slate, tile, wood shingle roofing or equal. 1" D\&M sheathing, 2" x $10^{\prime \prime}$ rafters 16 " o.c., insulation, ornamental wood cornice, copper flashing, gutters and conductors.

FLOORS

Basement 4" cement floor with monolithic finish on gravel base. Upper floors -- 1" clear oak, herringbone or parquetry pattern, sanded, filled and varnished including areas with marble, tile, slate, solid vinyl and fine grade of carpet. 1" D\&M subfloor or $3 / 4^{\prime \prime}$ plywood on $2^{\prime \prime} \times 12^{\prime \prime}$ wood joist, 16 " o.c. with bridging; steel girders and column supports for first floor. Attic floor and stairs not included in base price.

INTERIOR FINISH

Hardwood or enamel doors and trim throughout, excellent built-in kitchen and china cabinets, broom and linen cabinets with abundant shelving; $2^{\prime \prime} \times 4$ " wood stud partition walls, plaster and paint on interior walls, ceiling and partitions. High-grade ornamental moldings in main rooms and high-grade hardwood paneled rooms. Tiled bathroom with high-quality shower doors, and large vanity with the highest-quality laminated plastic, ceramic tile or marble countertops.

HEATING

Forced warm air, steam, vapor, hot water, radiant or equal with thermostatic controls. Automatic fired furnace or boiler. Exhaust fans in kitchen and bathroom.

PLUMBING

Fine-grade vitreous fixtures, copper piping, one bathroom with shower outlet over tub, kitchen sink, water heater.

LIGHTING

Electric lighting, conduit wiring, fine-grade fixtures throughout.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Modern Multi-story_ Grade AA

RESIDENCE - Modern Multi-story _Grade AA

Dwellings constructed of excellent-quality materials and workmanship, exhibiting oustanding architectural styling and treatment and having an abundance of built-in features. Architect designed and supervised homes would normally fall into this classification.

FOUNDATION

Masonry walls, waterproofed; concrete footings, drain tile. Full basement.

EXTERIOR WALLS

Shake shingles; high-grade aluminum, vinyl, metal, cement fiber or wood siding, stucco or synthetic plaster on rigid insulation (EIFS); hand-hewn, oversized or rustic logs; brick or native stone veneers; stucco, common or face brick or native stone over concrete block; solid brick. Framing will consist of 2" x $6^{\prime \prime}$ wood or 6 " steel studs, 16 " o.c., with $1^{\prime \prime}$ D\&M sheathing, Best quality solid-core exterior doors and wood, metal or vinyl windows. Three coats of exterior paint or stain. All doors and windows weather-stripped with wall insulation (see Energy Package below).

ROOF

Gable, hipped or gambrel, stained wood, slate or heavy asphalt shingles, 1 " D\&M sheathing, $2 " x 8$ " rafters, 16 " o.c., insulation, boxed cornice, copper flashing, gutters and conductors.

FLOORS

Basement, 4" cement on gravel base. Upper floors, 1" first grade oak or equal, sanded, filled and varnished, and areas with vinyl tile, ceramic tile or carpet; 1" D\&M or 5/8" plywood subfloor, 2" x 10 " wood joists, 16 " o.c. with bridging; steel girder and column supports for first floor. Attic floor and stairs not included in base price.

INTERIOR FINISH

Hardwood or high-grade enameled doors and trim throughout; good-grade built-in kitchen cabinets, broom closet, linen closets and clothes closets. Plaster or drywall interior walls and ceilings, painted or papered. Tiled bathroom with best quality laminated plastic, ceramic tile or simulated marble countertops.

HEATING

Forced warm air; steam, vapor, hot water, radiant or equal with thermostatic controls and automatic fired furnace or boiler. Exhaust fan in kitchen and bathroom.

PLUMBING

High-grade vitreous fixtures, copper piping, one bathroom with shower over tub, kitchen sink, water heater.

LIGHTING

Electric lighting, conduit wiring, ample outlets, high-grade fixtures throughout.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Modern Multi-story _ Grade A minus (-)

RESIDENCE - Modern Single Story _ Grade A

RESIDENCE - Modern Single Story _Grade A minus (-)

RESIDENCE - Contempory_Grade A minus (-)

RESIDENCE - Prairie_ Grade A

RESIDENCE - Craftsman_ Grade A

RESIDENCE - Colonial_ Grade A plus (+)

RESIDENCE - Colonial_ Grade A minus (-)

RESIDENCE - Victorian_ Grade A plus (+)

RESIDENCE - Victorian_ Grade A

RESIDENCE - Victorian_ Grade A

RESIDENCE - Victorian_ Grade A minus (-)

Dwellings constructed of good-quality materials and workmanship, exhibiting pronounced architectural styling and treatment and having an ample number of built-in features. Custom-built homes would normally fall into this classification.

FOUNDATION

Masonry or concrete block walls, concrete footings, drain tile. Full basement.

EXTERIOR WALLS

Shake shingles; aluminum, vinyl, metal, cement fiber or wood siding, stucco or synthetic plaster on rigid insulation (EIFS); hand-hewn, oversized or rustic logs; brick or native stone veneers; stucco, common or face brick or native stone over concrete block; solid brick. Framing will consist of 2 " x 6 " wood or $6 "$ steel studs, 16 " o.c., with 1" D\&M wood sheathing or plywood, Solid-core exterior doors and good-quality wood, metal or vinyl windows. Two coats of exterior paint or stain. All doors and windows weather-stripped with wall insulation (see Energy Package below).

ROOF

Gable, hipped or gambrel-type, wood, asphalt shingles, 1" D\&M or plywood sheathing, $2 " x 6$ " rafters, $16 "$ o.c., insulation, plain cornice, metal flashing, gutters and conductors.

FLOORS

Basement 4" cement on gravel base. Upper floors, 1" hardwood, sanded and varnished, and areas with vinyl tile or sheet, ceramic tile and carpet; 1 " D\&M subfloor or $5 / 8$ " plywood subfloor; 2" x 10" wood joists, 16" o.c., timber on steel girders and pipe columns supports first floor. Attic floor and stairs not included in base price.

INTERIOR FINISH

Enameled trim, fir or white pine doors, good kitchen cabinets, linen and clothes closets. Drywall or plaster walls and ceilings, papered or painted, tiled bathroom, with good-quality laminated plastic or ceramic tile vanity top.

HEATING

Forced warm air, steam, vapor, hot water, radiant or equal with thermostatic controls and automatic fired furnace or boiler. Exhaust fan in kitchen and bathroom.

PLUMBING

Good grade fixtures, copper piping, one bathroom, kitchen sink, water heater.

LIGHTING

Electric lighting, BX or non-metallic cable wiring, good-grade fixtures throughout.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Modern Multi-story_Grade B plus (+)

RESIDENCE - Modern Multi-story _Grade B

RESIDENCE - Modern Multi-story_Grade B

RESIDENCE - Modern Single Story_ Grade B plus (+)

RESIDENCE - Modern Single Story_ Grade B plus (+)

RESIDENCE - Modern Single Story_ Grade B

RESIDENCE - Modern Single Story_Grade B minus (-)

RESIDENCE - Split-Level_ Grade B plus (+)

RESIDENCE - Split-Level_Grade B minus (-)

RESIDENCE-Bi-Level_ Grade B minus (-)

RESIDENCE - Bi-Level_ Grade B minus (-)

RESIDENCE - Colonial_ Grade B

RESIDENCE - Colonial_ Grade B minus (-)

RESIDENCE - Colonial_ Grade B minus (-)

RESIDENCE - Colonial_Grade B minus (-)

RESIDENCE - Contempory_Grade B minus (-)

RESIDENCE - Contempory_Grade B minus (-)

RESIDENCE - Craftsman_ Grade B

RESIDENCE - Craftsman_ Grade B minus (-)

RESIDENCE - Victorian_ Grade B plus (+)

RESIDENCE - Bungalow_ Grade B plus (+)

RESIDENCE - Bungalow_ Grade B minus (-)

RESIDENCE - Bungalow_Grade B minus (-)

RESIDENCE - Cape Cod_Grade B plus (+)

RESIDENCE - Cape Cod_Grade B minus (-)

RESIDENCE - Ranch_Grade B

RESIDENCE - Ranch_Grade B minus (-)

RESIDENCE - Prairie_Grade B plus (+)

RESIDENCE - Prairie_ Grade B

RESIDENCE - Prairie_ Grade B minus (-)

RESIDENCE - Prairie_Grade B minus (-)

RESIDENCE - Farmhouse_ Grade B

Dwellings constructed of average-quality materials and workmanship, exhibiting moderate architectural styling and treatment and having a minimal number of built-in features. Typical tract-built homes would normally fall into this classification.

FOUNDATION

Poured concrete walls and concrete footings. Full basement.

EXTERIOR WALLS

Average-quality frame, masonry veneer, concrete block, brick or native stone veneers; rustic log; hand-hewn. Framing will consist of $2^{\prime \prime} \times 6^{\prime \prime}$ wood or 6 " steel studs, 16 " o.c., with $1^{\prime \prime}$ D\&M sheathing or plywood, Paneled exterior doors and average-quality wood, metal or vinyl windows. Two coats of exterior paint or stain. All doors and windows weatherstripped with wall insulation (see Energy Package below).

ROOF

Gable or hipped, asphalt shingles, $1^{\prime \prime}$ sheathing, $2^{\prime \prime} \times 6$ " rafters 16 " o.c., plain cornice, galvanized metal flashing, gutters and conductors.

FLOORS

Basement: 4" cement on compacted earth. Upper floors: hardwood, sanded and varnished, and areas with vinyl sheet or tile, ceramic tile and carpet; 1 " wood subfloor or $1 / 2^{\prime \prime}$ plywood subfloor, $2^{\prime \prime} \times 8^{\prime \prime}$ wood joists, $16^{\prime \prime}$ o.c., timber or steel beam and lolly column first floor supports. Attic floor and stairs not included in base price.

INTERIOR FINISH

Pine or fir doors and trim enameled or varnished, average-quality built-in kitchen cabinets, broom closet, linen and clothes closets. Drywall walls and ceilings, papered or painted. Average-quality laminated plastic or ceramic tile countertops.

HEATING

Forced air, steam, vapor, hot water or radiant with thermostatic controls and automatically fired furnace or boiler. Exhaust fan in kitchen.

PLUMBING

Average-grade fixtures, copper piping, one bathroom, kitchen sink, water heater.

LIGHTING

Electric lighting, non-metallic cable wiring, average-grade fixtures.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Modern Multi-story_ Grade C plus (+)

RESIDENCE - Modern Multi-story_ Grade C plus (+)

RESIDENCE - Modern Multi-story_ Grade C plus (+)

RESIDENCE - Modern Multi-story_ Grade C

RESIDENCE - Modern Single Story_ Grade C plus (+)

RESIDENCE - Modern Single Story_ Grade C plus (+)

RESIDENCE - Modern Single Story_ Grade C

RESIDENCE - Basic Single Story_ Grade C minus (-)

RESIDENCE - Split-Level_ Grade C plus (+)

RESIDENCE - Split-Level_ Grade C plus (+)

RESIDENCE - Split-Level_ Grade C minus (-)

RESIDENCE - Split-Level_ Grade C

RESIDENCE - Bi-Level_ Grade C plus (+)

RESIDENCE - Bi-Level_ Grade C

RESIDENCE - Bi-Level_ Grade C minus (-)

RESIDENCE - Craftsman_Grade C plus (+)

RESIDENCE - Craftsman_ Grade C

RESIDENCE - Colonial_ Grade C plus (+)

RESIDENCE - Colonial_ Grade C plus (+)

RESIDENCE - Colonial_ Grade C

RESIDENCE - Contempory_Grade C plus (+)

RESIDENCE - Contempory_Grade C

RESIDENCE - Victorian_Grade C plus (+)

RESIDENCE - Victorian_ Grade C

RESIDENCE - Cape Cod_ Grade C plus (+)

RESIDENCE - Cape Cod_ Grade C plus (+)

RESIDENCE - Cape Cod_ Grade C

RESIDENCE - Cape Cod_Grade C minus (-)

RESIDENCE - Bungalow_ Grade C plus (+)

RESIDENCE - Bungalow_Grade C

RESIDENCE - Bungalow_ Grade C minus (-)

RESIDENCE - Prairie_ Grade C plus (+)

RESIDENCE - Prairie_ Grade C plus (+)

RESIDENCE - Prairie_Grade C

RESIDENCE - Cottage_Grade C plus (+)

RESIDENCE - Cottage_ Grade C minus (-)

RESIDENCE - Cottage_ Grade C minus (-)

RESIDENCE - Ranch_Grade C

RESIDENCE - Ranch_ Grade C

RESIDENCE - Ranch_Grade C

RESIDENCE - Farmhouse_ Grade C plus (+)

RESIDENCE - Farmhouse_ Grade C plus (+)

RESIDENCE - Farmhouse_ Grade C

Dwellings constructed of fair-quality materials and workmanship, generally lacking architectural styling and treatment and having only a scant number of built-in features. Economy mass-built homes would normally fall into this classification.

FOUNDATION

Concrete block walls, concrete footings. Full basement.

EXTERIOR WALLS

1" drop siding, aluminum siding, 4" face brick or split block, $\mathrm{Y}^{\prime \prime}$ insulation board, 2" x 6" studs 16 " o.c., $1-3 / 8^{\prime \prime}$ wood doors and double-hung wood sash or aluminum frame windows. Two coats exterior paint.

ROOF

Gable or hipped type asphalt shingles, wood sheathing, 2" x 4" rafters 16" o.c., wood cornice, galvanized metal gutters and conductors.

FLOORS

Basement: 3" cement on compacted earth. Upper floors: 1" D\&M pine flooring with areas of linoleum, asphalt tile or carpet, 2 " x 8" wood joists, 16 " o.c. wood girder and lolly column first floor supports. Attic floor and stairs not included in base price.

INTERIOR FINISH

Pine doors and trim throughout, drywall or plaster, painted walls and ceilings. Cheap kitchen cabinets and clothes closets.

HEATING

Radiant, steam, forced warm air system or equal, with thermostat and automatically fired furnace or boiler.

PLUMBING

Cheap-quality piping and fixtures, one bathroom, kitchen sink, water heater.

LIGHTING

Electric lighting, non-metallic wiring, scarcity of outlets, and low cost fixtures.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Basic Single Story_ Grade D

RESIDENCE-Bi-Level_ Grade D

RESIDENCE - Split-Level_Grade D

RESIDENCE - Colonial_Grade D plus (+)

RESIDENCE - Bungalow_Grade D

RESIDENCE - Cape Cod_Grade D plus (+)

RESIDENCE - Cape Cod_Grade D

RESIDENCE - Cottage_ Grade D plus (+)

RESIDENCE - Cottage_Grade D

RESIDENCE - Cottage_Grade D minus (-)

RESIDENCE - Ranch_Grade D

RESIDENCE - Ranch_Grade D minus (-)

RESIDENCE - Farmhouse_Grade D plus (+)

RESIDENCE - Farmhouse_Grade D

Dwellings constructed of cheap-quality materials and poor workmanship, devoid of any architectural treatment and built-in features. Normally self built, with assistance from a mechanical contractor.

FOUNDATION

Cement block walls, concrete footings. Full basement.

EXTERIOR WALLS

Inexpensive aluminum, vinyl, cement fiber or wood lap siding, plywood or harboard; stucco, rustic logs; brick or stone veneers; stucco, common brick or stone over concrete block; painted or unpainted concrete block or solid brick. Framing will be 2" x 4" wood, 16 " o.c., paneled exterior doors, aluminum or wood windows. Two coats of exterior paint. All doors and windows weather-stripped with wall insulation (see Energy Package below).

ROOF

Gable or shed-type, roll-type, cheap shingles or metal roofing, 1" sheathing, 2" x 4" wood rafters $24^{\prime \prime}$ o.c., no cornice, gutters or conductors.

FLOORS

Basement: 3" cement on earth. Upper floors: softwood flooring, 2" x 8" wood joists, 20" o.c., wood girders and columns supporting first floor. Attic floor and stairs not included in base price.

INTERIOR FINISH

Cheap pine doors and trim. Cheap kitchen cabinets and closets. Drywall, cheap panel or equal walls and ceilings, painted.

HEATING

Forced warm air system with thermostat control.

PLUMBING

Cheap-quality piping and fixtures, one bathroom, kitchen sink, water heater.

LIGHTING

Electric lighting, non-metallic wiring, cheap fixtures, scarcity of outlets.

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

RESIDENCE - Cottage_Grade E plus (+)

RESIDENCE - Cottage_Grade E

The Dwelling Pricing Schedule is to be used for computing the replacement cost new of all dwellings. Square Foot C Grade base prices are provided for different floor levels of frame and masonry exterior wall construction, along with tables of base price adjustments, attachments and other features.

GENERAL APPLICATION

The general application of the pricing schedule is to select the base price which is most representative of the subject dwelling, and to adjust that base price to account for any variations between the subject dwelling and the model. Refer to the dwelling computations section of the property record card specifications for detailed pricing procedures.

SPECIAL APPLICATION

Bi-leveldesigns(as shown in Figure 1) are also referred to as "raised ranches." These are basically twolevel designs with approximately one half of the lower level above grade level and the other half below,

Figure 1. A Typical Bi-Level Dessign with the two levels split by a foyer at grade level, thus giving the effect of three-level dwelling. The upper level (2) generally houses the main living areas as found in a typical one-floor plan. The lower level (1) generally houses the family room, utility area and garage, but depending on the size of the dwelling, may house additional living space such as a den and an extra bedroom, as well as a utility room partially finished for use as a recreation room. Classify as a one-story dwelling with a full basement; the first story area is equal to the size of the upper level (2). Follow the general pricing procedures as described, being certain to consider the following items as applicable:

1. $A D D$ for finished basement living area.
2. ADD for finished basement recreation room.
3. ADD for basement garage.
4. ADD for masonry trim below the upper floor level.
5. ADD a cost and design factor of 0% to 5%, (depending upon the extent to which the design and related features add to the construction cost over and above base considerations) to account for the bi-level design.

Split-level designs, also referred to as tri-level and four-level dwellings. These are three- or four-level designs distinguishable by their irregular wall heights and different roof elevations. The split may be side to side or front to back. There are three basic variations:
A. A typical tri-level dwelling is shown in Figure 2. The upper two levels (2 and 3) generally house the main living area as found in a typical one-story plan, with bedrooms in the upper level (3), and the living, dining, kitchen and foyer areas at the grade level (2).The lower level (1) is normally the same size as level 3, approximately one half above and one half below grade level, and generally houses the family room or recreation room and utility areas. It may also house the garage, but with this design the garage is more often attached to level 2. (Note the similarity between level 1 in Figure 1 and Figure 2.)

Classify as a one story and dwelling with a partial basement and a first-story area equal to the combined size of the two upper levels (2 and 3), and follow the general pricing procedures described, being certain to consider the following items as applicable:

1. DEDUCT for partial basement.
2. ADD for finished basement living area and/or finished basement recreation rooms. (There is generally one or the other.)
3. ADD for masonry trim below the upper two levels (levels 2 and 3).
4. ADD a cost and design factor of 5% to 10%,(depending upon the extent to which the design and related features add to the construction cost over and above base considerations) to account for the split-level design.
B. A typical four-level dweling is shown in Figure 3. It is the same design as that shown in Figure 2, with the addition of level B to house the utility area, generally, and recreation room, leaving level 1 to house the family room and garage.

Figure 3. A Typical Four-Level Design

Classify as a one-story dwelling with a full basement and a first-story area equal to the combined size of the two upper levels (2 and 3), and follow the general pricing procedures described, being certain to consider the following items as applicable:

1. ADD for finished basement living area.
2. ADD for finished basement recreation rooms.
3. ADD for basement garage.
4. ADD for masonry trim below the upper two levels (levels 2 and 3).
5. ADD a cost and design factor of 5% to 10% (depending upon the extent to which the design and related features add to the construction cost over and above base considerations) to account for the split-level design.
A. A typical variation of the four-level dwelling is shown in Figure 4. The difference between this design and that shown in Figure 3 is that level 1 , rather than level 2 , is at grade and level is approximately one half above and one half below grade. The foyer, family room and garage are generally located at the grade level (I), giving the appearance of a part two-story and part one-story dwelling with a basement.

Figure 4. A Typical Four-Level Design

Classify as a one-story and full basement dwelling with a first-story area equal to the combined size of the two upper levels (2 and 3), and follow the general pricing procedures prescribed, being certain to consider the following items as applicable:

1. ADD for finished basement living area.
2. $A D D$ for finished basement recreation rooms.
3. ADD for basement garage.
4. ADD for masonry trim below the upper two levels (levels 2 and 3).
5. ADD a cost and design factor of 10% to account for the split-level design and related features.

SPECIAL LISTING INSTRUCTIONS
Crop Drying System - Building-mounted Solar Collector - The cost is per square foot of building area.
For Unique Residence Types - Grade factors may be used in addition to cost and design factors to recognize quality differences in homes. Use the Dwelling CDU table for depreciation.
A-Frame - List as one-story frame. The loft is handled through the cost and design factor.

Envelope Homes - The area of the home should be determined by using the interior wall dimension. The exterior wall is handled through the cost and design factor.
Residential Greenhouses - For depreciation, use Percent Good Table 5 on Page 6-14.

LARGE RESIDENCE MULTIPLIERS

To estimate a dwelling price for residences greater than 4,000 square feet, apply the following multipliers to the 4,000 -square-foot base price for the appropriate exterior wall (Pages 3-68 through 3-73). Use these same multipliers for Upper and Half-Story, Attic Finish and all Base Price Adjustments found on Page 3-74.

AREA	MULTIPLIER	AREA	MULTIPLIER	AREA	MULTIPLIER	AREA	MULTIPLIER
4050		4800		5550		6300	
4100		4850		5600		6350	
4150		4900		5650		6400	
4200		4950		5700		6450	
4250		5000		5750		6500	
4300		5050		5800		6550	
4350		5100		5850		6600	
4400		5150		5900		6700	
4450		5200		5950		6750	
4500		5250		6000		6800	
4550		5300		6050		6850	
4600		5350		6100		6900	
4650		5400		6150		6950	
4700				6200		7000	
4750							

DWELLING PRICING SCHEDULE

FRAME BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{array}{\|c\|} \hline \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{array}$	UPPER STORY	$\begin{aligned} & \text { HALF } \\ & \text { STORY } \end{aligned}$	ATTIC, FIN.
400				
450				
500				
550				
600				
650				
700				
750				
800				
850				
900				
950				
1000				
1050				
1100				
1150				
1200				
1250				
1300				
1350				
1400				
1450				
1500				
1550				
1600				
1650				
1700				
1750				
1800				
1850				
1900				
1950				
2000				
2050				
2100				
2150				

FRAME BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

DWELLING PRICING SCHEDULE

MASONRY VENEER BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	$\begin{aligned} & \text { HALF } \\ & \text { STORY } \end{aligned}$	ATTIC, FIN.
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$				
$\begin{aligned} & 600 \\ & 650 \\ & 700 \\ & 750 \end{aligned}$				
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$				
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \end{aligned}$				
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \end{aligned}$				
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$				
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$				
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \end{aligned}$				
$\begin{aligned} & 2000 \\ & 2050 \\ & 2100 \\ & 2150 \end{aligned}$				

MASONRY VENEER BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

CONCRETE BLOCK BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	$\begin{aligned} & \text { HALF } \\ & \text { STORY } \end{aligned}$	ATTIC, FIN.
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$				
$\begin{aligned} & 600 \\ & 650 \\ & 700 \\ & 750 \end{aligned}$				
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$				
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \end{aligned}$				
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \end{aligned}$				
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$				
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$				
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \end{aligned}$				
$\begin{aligned} & 2000 \\ & 2050 \\ & 2100 \\ & 2150 \end{aligned}$				

CONCRETE BLOCK BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

DWELLING PRICING SCHEDULE

BRICK OR STONE BASE PRICES (COSTS PER SQUARE FOOT)					BRICK OR STONE BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.	AREA		UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$					$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 600 \\ & 650 \\ & 700 \\ & 750 \end{aligned}$					$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$					$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \end{aligned}$					$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \end{aligned}$					$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$					$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$					$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \end{aligned}$					$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 2000 \\ & 2050 \\ & 2100 \\ & 2150 \end{aligned}$					$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

RUSTIC LOG BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$				
$\begin{aligned} & 600 \\ & 650 \\ & 700 \\ & 750 \end{aligned}$				
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$				
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \end{aligned}$				
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \end{aligned}$				
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$				
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$				
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \end{aligned}$				
$\begin{aligned} & 2000 \\ & 2050 \\ & 2100 \\ & 2150 \end{aligned}$				

RUSTIC LOG BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

DWELLING PRICING SCHEDULE

HAND-HEWN LOG BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$				
$\begin{aligned} & 600 \\ & 650 \\ & 700 \\ & 750 \end{aligned}$				
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$				
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \end{aligned}$				
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \end{aligned}$				
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$				
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$				
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \end{aligned}$				
$\begin{aligned} & 2000 \\ & 2050 \\ & 2100 \\ & 2150 \end{aligned}$				

HAND-HEWN LOG BASE PRICES (COSTS PER SQUARE FOOT)				
AREA	$\begin{gathered} \text { 1ST } \\ \text { STORY \& } \\ \text { BSMT. } \end{gathered}$	UPPER STORY	HALF STORY	ATTIC, FIN.
$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$				
$\begin{aligned} & 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$				
$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$				
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$				
$\begin{aligned} & 3000 \\ & 3050 \\ & 3100 \\ & 3150 \end{aligned}$				
$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$				
$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$				
$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \end{aligned}$				
$\begin{aligned} & 3800 \\ & 3850 \\ & 3900 \\ & 4000 \end{aligned}$				

DWELLING PRICING SCHEDULE - BASE PRICE ADJUSTMENTS

BASEMENTS							
AREA	FULL	PARTIAL	WALKOUT	AREA	FULL	PARTIAL	WALKOUT
400 450 500 550				$\begin{aligned} & 2200 \\ & 2250 \\ & 2300 \\ & 2350 \end{aligned}$			
$\begin{aligned} & \hline 600 \\ & 650 \\ & 700 \\ & 750 \\ & \hline \end{aligned}$				$\begin{aligned} & \hline 2400 \\ & 2450 \\ & 2500 \\ & 2550 \end{aligned}$			
$\begin{aligned} & 800 \\ & 850 \\ & 900 \\ & 950 \end{aligned}$				$\begin{aligned} & 2600 \\ & 2650 \\ & 2700 \\ & 2750 \end{aligned}$			
$\begin{aligned} & 1000 \\ & 1050 \\ & 1100 \\ & 1150 \\ & \hline \end{aligned}$				$\begin{aligned} & \hline 2800 \\ & 2850 \\ & 2900 \\ & 2950 \end{aligned}$			
$\begin{aligned} & 1200 \\ & 1250 \\ & 1300 \\ & 1350 \\ & \hline \end{aligned}$				$\begin{aligned} & \hline 3000 \\ & 3050 \\ & 3100 \\ & 3150 \\ & \hline \end{aligned}$			
$\begin{aligned} & 1400 \\ & 1450 \\ & 1500 \\ & 1550 \end{aligned}$				$\begin{aligned} & 3200 \\ & 3250 \\ & 3300 \\ & 3350 \end{aligned}$			
$\begin{aligned} & 1600 \\ & 1650 \\ & 1700 \\ & 1750 \end{aligned}$				$\begin{aligned} & 3400 \\ & 3450 \\ & 3500 \\ & 3550 \end{aligned}$			
$\begin{aligned} & 1800 \\ & 1850 \\ & 1900 \\ & 1950 \\ & \hline \end{aligned}$				$\begin{aligned} & 3600 \\ & 3650 \\ & 3700 \\ & 3750 \\ & \hline \end{aligned}$			
$\begin{aligned} & \hline 2000 \\ & 2050 \\ & 2100 \\ & 2150 \\ & \hline \end{aligned}$				$\begin{aligned} & \hline 3800 \\ & 3850 \\ & 3900 \\ & 4000 \\ & \hline \end{aligned}$			

$\left.\begin{array}{|rr|}\hline & \\ \text { QUALITY } \\ \text { GRADE } \\ \text { FACTOR }\end{array}\right]$

BASE PRICE ADJUSTMENTS	
Crawlspace	
Full Finish	
Recreation Room Finish	
Unfinished Living Area	

HEATING

No Heat - Deduct (-)
Air Conditioning - Same Ducts
Air Conditioning - Separate Ducts
GEO Thermal
Secondary Heating System
Wood-fired Furnace - indoor
outdoor
Space Heater

PLUMBING

Base Price Includes 5 Fixtures w/ no Rough-Ins
Add/Deduct for each fixture greater or less than 5
Add for each Rough-In
Add for Whirlpool Tub

QUALITY GRADE FACTORS FOR ALL ATTACHMENTS AND OTHER FEATURES					
AA $=2.50$	$\mathrm{~A}=1.55$	$\mathrm{~B}=1.28$	$\mathrm{C}=1.00$	$\mathrm{D}=0.85$	$\mathrm{E}=0.55$

CODE	DWELLING PRICING SCHEDULE - OTHER FEATURES				
551	MASONRY ADJUSTMENT (+ or-)	Adjustment per square foot of wall area			
553	WOODBURNING FIREPLACES	Add per item Stack and one opening Each additional opening Each additional story of chimney stack (base = one story)			
554	PREFABRICATED METAL FIREPLACES	Stack and one opening Each additional story of chimney stack (base = one story)			
555	GAS FIREPLCES	Add for each			
558	DORMERS	Add per linear foot of roof dormer; measure across the face.		Shed	Gable/Hip
	ROOF ADJUSTMENT	Metal Roof- Shingles, Shakes, Vertical Panels	1-Story	1122 Story	2-Story
	WHOLE HOUSE OR COMMERCIAL GENERATOR	Add per item			

DETACHMENTS

DETACHMENT PRICING SCHEDULE (COSTS PER SQUARE FOOT)			
TYPE	DETACHED GARAGE		
CODE	RG1	RG2	RG3
AREA	FRAME OR	MASONRY	POLE
	CONCRETE BLOCK	OR LOG	FRAME
160			
180			
200			
220			
240			
260			
280			
300			
320			
340			
360			
380			
400			
420			
440			
460			
480			
500			
520			
540			
560			
580			
600			
620			
640			
660			
680			
700			
720			
760			
800			
880			
920			
960			
1000			
$0 V E R$			

*For interior finish, use the Attached Garage Adj.		
DETACHED GARAGE QUALITY GRADE FACTOR		
AA $=2.50 \quad \mathrm{~A}=1.55$	$\mathrm{~B}=1.28$	$\mathrm{C}=1.00$
CARPORT	RC1 $=0.85 \quad \mathrm{E}=0.55$	
CANOPY	RC2	
DRIVEWAY		
Concrete	RC3	
Asphalt	RC4	
Gravel	RC5	
UTILITY SHEDS		
Frame	RS1	
Metal	RS2	
Add for shop additions	RS3	

ATTACHMENTS

DWELLING PRICING SCHEDULE - ATTACHMENTS (COSTS PER SQUARE FOOT)		
TYPE	ATTACHED GARAGES	
CODE	13	23
AREA	$\begin{gathered} \hline \text { Frame } \\ \text { or } \\ \text { CB } \end{gathered}$	$\begin{gathered} \text { Mas. } \\ \text { or } \\ \text { Log } \end{gathered}$
$\begin{aligned} & 160 \\ & 180 \\ & 200 \end{aligned}$		
$\begin{aligned} & 220 \\ & 240 \\ & 260 \end{aligned}$		
$\begin{aligned} & 280 \\ & 300 \\ & 320 \end{aligned}$		
$\begin{aligned} & 340 \\ & 360 \\ & 380 \end{aligned}$		
$\begin{aligned} & 400 \\ & 420 \\ & 440 \end{aligned}$		
$\begin{aligned} & 460 \\ & 480 \\ & 500 \end{aligned}$		
$\begin{array}{r} 520 \\ 560 \\ 600 \\ \text { OVER } \end{array}$		
$\ddagger_{\text {Attached garage adjustment (-) }}$ Deduction for exposed stud common wall (no drywall). Priced per linear foot of common wall $\$ 18.33$.		

SPAS AND HOT TUBS

Exterior gunite spas and tubs. For interior installations, add 5\% to 15\%. Custom free-form and rockscape spas may run 75% to 150% more. Typical decking will add 40% to the basic spa cost.
attached to pool, shared pool equipment
detached, including equipment.
-
portable, self-contained fiberglass or wood units, complete
-
acrylic/thermorplastic, single lounge \qquad
double lounge
redwood hot tubs

RESIDENTIAL GREENHOUSES

Conventional

BASE SPECIFICATIONS
Two glass-enclosed ends, concrete floor, masonry sidewall, heat, electric.

BASE PRICES	
AREA	STRUCTURE TYPE
	RN1
	Cost per Square Foot
60	
80	
100	
120	
140	
160	
180	
200	
220	
240	
260	
280	
300	
350	
400	
450	
500	
600	

For Conventional Greenhouses - For gable end doors, add

Solar

BASE SPECIFICATIONS
Double, insulated, tempered glass onends and sidewall, alu- minum extrusions, concrete floor, electric, no heat.

BASE PRICES	
AREA	STRUCTURE TYPE
	RN2
	Cost per Square Foot
60	
80	
100	
120	
140	
160	
180	
200	
220	
240	
260	
280	
300	
350	
400	
450	
500	
600	

for each door. For tempered or laminated safety glass or structural polycarbonate or for tinted or heat-reflective glass, use a factor of 1.25 . For insulated glass, use a factor of 1.50 . For polyethylene cover, use a factor of .75 ; for double polyglazed, use a factor of .80 ; for semicircular structure, use a factor of .75 ; for a modified bow (3'side wall), use a factor of 80 .
Deduct for floors other than concrete: dirt, ; gravel, ; asphalt, Add for the following: humidifiers, ; ventilating fans, ; planting benches, per square foot; for glazed partitions, per square foot of partition.
For Solar Greenhouses (Sunrooms) - For additional gable end doors, add for each door. For laminated wood framing, use a factor of 1.10. For built-in shades, add per square foot of covered area. For motorized operation, add per operator. For heaters, add . For two-sided greenhouses reduce by one quality.

QUALITY GRADE FACTORS FOR GREENHOUSES	$\mathrm{AA}=2.50$	$\mathrm{~A}=1.55$	$\mathrm{~B}=1.28$	$\mathrm{C}=1.00$	$\mathrm{D}=0.85$	$\mathrm{E}=0.55$

SAUNA BATHS - Per square foot of floor area.

Prefabricated units including interior wall finish, door, heater and controls.

```
15 sq. ft. to 24 sq. ft. . . . . . . . . . . . . . . . . . . . . .
25 sq. ft. to 48 sq. ft.
```

\qquad

```
50 sq. ft. to }74\mathrm{ sq. ft.
75 sq. ft. to }100\mathrm{ sq. ft.
```


SOLAR HEATING SYSTEMS

> Domestic water heating and space heating systems - Include installation and equipment - Add Attic system - Use Finished Attic prices from Dwelling Pricing Schedule for total living area heated. Photovoltaic system - Add per watt. Trombe wall heating system - Add per square foot of living area. Water wall heating system - Includes installation, heat exchanger, control panel and storage tanks - Add Window wall - Priced per linear foot of wall (8 ft high $)-$

Solar Energy components may be exempt under Wisconsin Statute Section 70.111(18).

These are types of dwellings that, due to their uniqueness in style of construction or materials utilized, require a cost and design factor to be added in order to allow the pricing tables to value them correctly. Factors are to be applied to the Frame Base Prices, unless otherwise stated.

A-Frames

List as one story.
Pine exterior - No cost and design factor is necessary.
Cedar exterior - Add a cost and design factor of (+) 15\%.
Geodesic Dome Homes
List as 1-story masonry construction.
Add a cost and design factor of (+) 10\%.

Earth Homes

List as 1-story masonry construction - no basement. Add a cost and design factor of (+) 15%.

Envelope House

Add a cost and design factor of (+) 10%.

Turbine is designed to cut in at 4.6 meters/second and to reach a rated output of 50 kilowatts at 11.3 meters/second. Peak output of 66 kilowatts is reached at 15 meters/second. Assuming 100\% availability, turbine is calculated to produce 153,000 kilowatt-hours/year at an average wind speed of 6.7 meters/second. 80-foot galvanized tower.						
Price range: -						
Mechanical Windmills						
Tower Height	Windmill Cost					
	6 Ft.	8 Ft .	10 Ft .	12 Ft .	14 Ft .	16 Ft .
21						
27						
33						
40						
47						

SPECIAL LISTING INSTRUCTIONS

Solar and Wind Energy costs may be exempt under Wisconsin Statute Section 70.111(18).

Solar Energy Costs are to be treated as a "total other" feature, so that a grade factor and a local modifier can be applied to them.
For Unique Residence Types - Grade factors may be used in addition to cost and design factors to recognize quality differences in homes. Use the Dwelling CDU table for depreciation.
A-Frame - List as one-story frame. The loft is handled through the cost and design factor.

Log Cabins - The cost and design factor should be applied only to recently constructed log cabins. The small and cheaply built log cabins should be handled through the use of the grading system.
Envelope Homes - The area of the home should be determined by using the interior wall dimensions. The exterior wall is handled through the cost and design factor.
Residential Greenhouses - For depreciation, use Percent Good Table 5 on Page 6-15.

WIND ENERGY SYSTEMS

Pumping capacities* of windmills shown in the table below are approximate, based on the mill set on the long stroke, operating in a 15 - to 20 -mile-per-hour wind. The short stroke increases elevation by one third and reduces pumping capacities by one fourth. See the cost table at the top of this page.

Size of Cylinder, Inches	*Capacity, Gallons per Hour		Elevation in Feet to Which Water Can Be Raised: Size of Windmill					
	6 Ft .	8-16 Ft.	6 Ft .	8 Ft .	10 Ft .	12 Ft .	14 Ft .	16 Ft .
$17 / 8$	125	180	120	175	260	390	560	920
2	130	190	95	140	215	320	460	750
$21 / 4$	180	260	75	110	170	250	360	590
$21 / 2$	225	325	65	95	140	210	300	490
$23 / 4$	265	385	55	80	120	180	260	425
3	320	470	45	65	100	150	220	360
$31 / 2$	440	640	35	50	75	110	160	265
$33 / 4$	-----	730	-----	-----	65	95	140	230
4	570	830	25	35	55	85	125	200
5	900	1,300	15	25	35	55	80	130
6	-----	1,875	-----	15	25	35	55	85

The following is a guideline for estimating percent of completion for typical residential construction.

	$\begin{aligned} & \text { Percent of } \\ & \text { Total } \end{aligned}$	Cumulative Percent of Total
Plans, permits and survey	2	2
Foundation, excavation, forms	4	6
Water/sewage hookup	2	8
Concrete	5	13
Concrete flatwork	3	16
Rough framing and sheathing	21	37
Windows and exterior doors	4	41
Roof cover	3	44
Rough-in plumbing	4	48
Insulation	1	49
Rough-in electrical and mechanical	11	60
Exterior cover	5	65
Interior drywall	8	73
Built-in cabinets, interior doors, trim, etc.	9	82
Plumbing fixtures	5	87
Flooring covers	4	91
Built-in appliances	2	93
Light fixtures and finish hardware	2	95
Painting and decorating .	4	99
Landscaping	1	100
AL	100\%	

GENERAL
Mobile homes, also referred to as Manufactured Housing, are residential structures built on steel undercarriages with necessary wheel assemblies to be transported to permanent or semipermanent sites. The wheel assembly can be removed when a unit is placed on a permanent foundation, but the steel undercarriage may remain intact if it is a necessary structural component. In some instances, the presence of a steel udercarriage as a necessary structural component is the primary distinguishing factor between a higher-quality mobile home and a modular house.

Note: Manufactured homes built (in the U.S.) after J une 15, 1976, must meet the Federal Manufactured Home Construction and Safety Standards as outlined in Title VI, Housing and Community Development Act of 1974. A HUD seal certifying compliance with these standards must be displayed on each unit. For purposes of estimating replacement cost for those built prior to the enactment of these standards, as well as for those manufactured homes built after 1976, this section should be used.

Mobile homes consist of single or multisectional units, eight feet or greater in width and at least thirty-two feet in length. After being transported on their own wheel chasis to the site, the units are set up as permanent or semipermanent residences and are connected to the necessary utilities.

The residences are usually described in terms of width and length and are priced accordingly (i.e., 12 ' x 52', 24' x 64', with a 10 ' x 40' tag, etc.). In calculating actual square footage, do not include the hitch in the overall dimensions. Mobile homes are categorized into six quality levels: AA, A, B, C, D and E.

Costs are retail prices, including normal charges for delivery and setup on post and piers within 100 miles of the dealer. Although some units are sold furnished, furnishings or appliances are not included in the base costs. Generally these structures are purchased directly from factory dealers/installers and can, at times, be influenced by inventory discounting, predatory pricing, etc., which are not contemplated here. Local fees, licenses and utility costs are not included and should be added when applicable. Appliances, drapes, skirting, patio roofs, carports and other optional items can be priced separately from other pages in the section.

Double sections, triple sections or quads (four sections) are terms used to describe manufactured houses having two or more sections. Square foot costs for double sections, based on length and gross width, are provided on the cost page.

Triple sections are priced by using the double section costs for the two main sections and a single section cost for the third section. The third section is often considered a tagalong and requires a cost adjustment as provided on the cost page.

Quads (four sections) are to be priced as two double sections with the tagalong percentage adjustment applied to the second double section base cost.

A tagalong is an attached section, usually a full width, but not necessarily the full length of the main section(s). It is the same in both structure and quality as the unit to which it is attached. A tagalong is priced as a single section but requires a percent age cost adjustment as indicated on each of the cost pages.

The higher-quality mobile homes are similar in both design and appearance to modular manufactured houses and, to an extent, site-built residences as found in tract developments. Costs for these types of construction will overlap. The higher-quality mobile homes will often exceed minimum manufactured home code requirements and will often meet, in part, local building codes.

These homes are similar in both design and appearance to modular constructed houses and to an extent, site-built residences typically found in tract development. Costs for these types of construction will overlap. Mobile homes at this quality level will exceed minimum requirements of manufactured home codes and will often meet, in part, local building codes.

FOUNDATION

Setup on concrete or steel piers. Add for continuous perimeter wall foundation.
FRAME
Heavy steel beam undercarriage with outriggers and cross members. The undercarriage is a necessary structural component.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

High-quality, medium-weight carpet and vinyl.

EXTERIOR WALL

2" x 6" wood or steel studs. Exterior finish is plywood with batts or hardboard sheets. Ample fenestration with aluminum or wood sash windows. Exterior trim could typically consist of brick or stone veneer.

ROOF

Engineered truss system and sheathing. Roof covers can include composition shingles, wood shake or shingles, concrete or clay tile. Roof slope is typically 3 in 12 to 4 in 12 , with a minimum overhang of 16 ".

INTERIOR FINISH

$2 " x 4 "$ stud interior walls. Interiors have good tape and textured finished dr ywall with some paper or vinyl wall covering or natural wood veneer paneling. Good natural wood veneer cabinets and vanities with laminated plastic or simulated marble countertops and backsplash. Veneered hollow-core or raised-panel doors. Walk-in closets or large sliding-door wardrobes. Typical ceiling height is $8^{\prime \prime} 0^{\prime \prime}$. Ceilings are drywall, textured, and, where practical, may be dropped, sloped or cathedral, and have exposed beams.

HEATING

A forced-air furnace based on an extreme climate, with adequate output and ductwork is included in the basic residence cost.

LIGHTING

Numerous convenience outlets. Some recessed fluorescent fixtures in kitchen and bath areas.

PLUMBING

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: deluxe whirlpool tub, lavatory, toilet, tub with shower over, tiled or modular stall shower, kitchen sink, laundry tray, water heater and wet bar.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

These homes are typically found in high-quality manufactured housing parks. Exterior finishes and interior refinements will resemble those of site-built housing. They will exceed minimum requirements of manufactured home codes.

FOUNDATION

Setup on concrete or steel piers. Add for continuous perimeter foundation wall.

FRAME

Heavy steel beam undercarriage with outriggers and cross members.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

High-quality, medium-weight carpet and vinyl.

EXTERIOR WALL

Wood or steel 2" x 6" studs. Exterior finish is plywood with batts or hardboard sheets. Ample fenestration, with aluminum or wood sash windows, and may have a sliding glass door and an ornamental, recessed entrance. Exterior trim could typically consist of some imitation stone or brick.

ROOF

Engineered truss system and sheathing. Roof covers can include composition shingles, wood shingles, concrete or clay tiles. Roof slope is typically 3 in 12 to 4 in 12 , with a moderate overhang.

INTERIOR FINISH

2" x 4" stud interior walls with paper, vinyl or paint and textured drywall or natural wood veneer. Natural wood veneer cabinets and vanities with laminated plastic or simulated marble countertops and backsplash. Veneered hollow-core doors. Walk-in closets or large sliding-door wardrobes. Typical ceiling height is $8^{\prime} 0^{\prime \prime}$. Ceilings are dr ywall, textured and, where practical, may be dropped, sloped or cathedral, and have exposed beams.

HEATING

A forced-air furnace based on an extreme climate, with adequate output and ductwork is included in the basic residence cost.

LIGHTING

Numerous convenience outlets. May have recessed fluorescent fixtures in kitchen and bath areas.

PLUMBING

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: lavatory, toilet, tub with shower over, tiled or modular stall shower, kitchen sink, laundry tray, water heater and whirlpool tub.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

These homes will generally exceed the minimum manufactured home code requirements. Exterior design and interior finishes will include some detail and ornamentation. Connection seams will be somewhat apparent on multisectional houses.

FOUNDATION

Setup on steel or concrete piers. Add for continuous foundation wall.

FRAME

Rigid steel beam undercarriage with outriggers and cross members.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

Good-quality, medium-weight carpet and vinyl composition tile.

EXTERIOR WALL

2" x 4" studs. Exterior finish is aluminum, vinyl, plywood or hardboard, sometimes a combination of two. The finish is often in various textures such as horizontal siding and board and batten. Ample fenestration, with aluminum or vinyl windows and a sliding glass door. Exterior finish often will include some ornamentation.

ROOF

Engineered truss system and sheathing. Roof covers can include composition shingles, wood shingle, and metal, corrugated or ribbed. Roof slope is typically 3 in 12 , with a minimal overhang.

INTERIOR FINISH

Good-quality prefinished plywood paneling, natural wood or paper veneer on 2 " x 4" studs. Large wardrobe closets and ample storage space. Laminated plastic or simulated marble countertops and backsplash. Veneered hollow-core doors. Paingrade, vinyl-covered particleboard or inexpensive wood veneer kitchen cabinets and bathroom vanity. Ceiling typically $8^{\prime} 0$ " high and, where practical, sloped or cathedral with exposed beams.

HEATING

A forced-air furnace based on an extreme climate, with adequate ductwork is included.

LIGHTING

Ample number of convenience outlets. Some fluorescent fixtures in kitchen and bath areas.

PLUMBING

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: lavatory, toilet, tub with shower over, tiled or modular stall shower, kitchen sink, laundry tray and water heater.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

These homes meet or exceed manufactured home code requirements. The overall quality of materials and workmanship is average and of standard grade. The front elevation will often have some ornamentation.

FOUNDATION

Setup on steel or concrete piers. Add for continuous foundation wall.

FRAME

Medium-weight steel beam undercarriage with outriggers and cross members.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

Lightweight carpet and pad, asphalt or vinyl composition tile.

EXTERIOR WALL

Exterior finish is prefinished aluminum, hardboard or plywood sheet, vinyl or hardboard lap siding on 2" $\times 4$ " studs. Adequate fenestration with some trim around aluminum windows. Often the exteriors will have a combination of two textures or two colors.

ROOF

Engineered trusses and sheathing with corrugated or ribbed metal roofing or composition shingles. Roofs are typically sloped or arched, with front overhang.

INTERIOR FINISH

Medium-quality prefinished plywood or hardboard paneling on 2 " $\times 3$ " or 2 " $\times 4$ " studs. Adequate wardrobe closets and storage. Laminated plastic countertops and backsplash. Standard-grade hollow-core doors. Paint-grade, vinyl-covered particleboard or inexpensive wood veneer kitchen cabinets and bathroom vanity. Ceiling height is typically $7^{\prime} 6^{\prime \prime}$ to $8^{\prime} 0^{\prime \prime}$.

HEATING

A forced-air furnace based on an extreme climate, with adequate ductwork is included.

LIGHTING

Ample number of convenience outlets. Some luminous fixtures in the kitchen and bath areas.

PLUMBING

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: lavatory, toilet, tub with shower over, tiled or modular stall shower, kitchen sink, laundry tray and water heater.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

These homes are designed to meet standard manufactured home code requirements. The overall quality of materials and workmanship, while average, will be relatively plain in finish and appearance. The floor plan is usually simple, with plumbing wet wall on a single outside wall.

FOUNDATION

Setup on steel or concrete piers. Add for continuous foundation wall.

FRAME

Medium-weight steel beam undercarriage with outriggers and cross members.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

Inexpensive carpet and pad, asphalt or vinyl composition tile. Floor cover is not included in the basic residence cost.

EXTERIOR WALL

Exterior finish is aluminum prefinished or hardboard sheet siding on $2^{\prime \prime} \times 3^{\prime \prime}$ or $2^{\prime \prime} \times 4$ " studs. Limited standard fenestration with little ornamentation.

ROOF

Engineered trusses and sheathing with corrugated or ribbed metal roofing or composition shingles. Roofs are typically low-pitched, arched or sloped, with minimal overhang on front elevation.

INTERIOR FINISH

Low-quality prefinished plywood paneling, printed hardboard or thin, paper-veneered dr ywall on 2" $\times 3^{\prime \prime}$ or $2^{\prime \prime} \times 4^{\prime \prime}$ studs. Small wardrobes. Laminated plastic countertops and backsplash. Standard-grade hollow-core doors. Paint-grade or vinyl-covered particleboard kitchen cabinets and bathroom vanity. Ceiling height is typically $7^{\prime} 6^{\prime \prime}$ to 8' 0".

HEATING

A forced-air furnace based on an extreme climate, with adequate ductwork, is included.

LIGHTING

Minimum number of convenience outlets. Low-cost lighting fixtures.

PLUMBING

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: lavatory, toilet, tub, tub with shower over, kitchen sink and water heater. All fixtures are usually located along one side of the house (wet wall) with minimal runs.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

These homes are designed to meet minimum manufactured home code requirements. The overall quality of materials and workmanship is below average. The floor plan is usually simple, with little or no attention given to detail.

FOUNDATION

Setup on steel or concrete piers. Add for continuous perimeter wall.

FRAME

Light steel beam undercarriage with outriggers and cross members.

FLOOR STRUCTURE

Wood floor joists with particleboard or plywood decking, waterproofing and insulation.

FLOOR COVER

Inexpensive carpet and pad, asphalt or vinyl composition tile.

EXTERIOR WALL

Exterior finish is prefinished aluminum wall and roof panels. Minimum fenestration using economy-grade windows.

ROOF

Engineered trusses and sheathing with corrugated or ribbed metal roofing or composition shingle. Roofs are flat or slightly arched, with no overhang.

INTERIOR FINISH

Low-quality printed hardboard or prefinished plywood paneling on 2" x 3" studs. Small wardrobes. Economy-grade hollow core doors. Paint-grade or vinyl-covered particleboard kitchen cabinets and bathroom vanity. Ceiling height is typically 7 ' 6 " to $8^{\prime} 0^{\prime \prime}$.

HEATING

A forced-air furnace based on an extreme climate.

LIGHTING

Minimum number of electrical outlets. Low-cost lighting fixtures.

PLUMBING:

Five plumbing fixtures are included in the base cost. The fixtures can include any of the following: lavatory, toilet, tub, tub with shower over, kitchen sink and water heater. All fixtures are usually located along one side of the house (wet wall) with minimal runs.

INSULATION

Floor, wall and ceiling insulation for an extreme climate is included in the basic residence cost. Use the negative (-) adjustment list on the cost page.

Grade AA

Grade A

Grade B

Grade C+Plus

Grade C

Grade D

MOBILE HOME PRICING SCHEDULE

LENGTH	SINGLE WIDE						DOUBLE WIDE				
FEET	8	10	12	14	16	18	20	24	28	32	36
20											
24											
28											
32											
36											
40											
44											
48											
52											
56											
60											
64											
68											
72											
76											
80											

EXTERIOR WALL ADJUSTMENTS
For other than hardboard sheet wall finish (Base) adjust the price above by the following factors: Aluminum, .97; Lap siding, 1.04 ; Cement fiber, lap, 1.03; Cement fiber, sheet 1.01; Plywood with batts, 1.02; Stucco, 1.07; Wood stresskin sandwich panels, 1.05 ; Log siding, 1.05.
TRIPLE WIDE: Apply a factor of .85 to the single-wide price for a tagalong section; use full price for the double-wide portion. See example below.
QUADS (four sections): Use full price for the first double-wide portion; use a factor of .85 for the second double-wide portion.

BASE PRICE ADJUSTMENTS

HEATING: Add for air conditioning at per square foot of living area.
PLUMBING: Base price includes: Five fixtures equal to , with no rough-ins. Add or deduct per fixture, Add for each rough-in at

FOUNDATION ADJUSTMENTS: Priced per linear foot of perimeter: concrete wall ; concrete block walls, ; treated wood,
SKIRTING: Priced per linear foot of perimeter: metal or vinyl, ; simulated stone or brick panels, brick or stone veneer,

OTHER

ATTACHMENTS AND OTHER FEATURES	Price from Residential pricing schedule.
POOLS	. Price from the appropriate Residential pricing schedule.
OTHER BUILDING IMPROVEMENTS	Price from the appropriate Residential pricing schedule.

	QUALITY GRADE FACTORS				
$\mathrm{AA}=1.75$	$\mathrm{~A}=1.45$	$\mathrm{~B}=1.20$	$\mathrm{C}=1.00$	$\mathrm{D}=0.85$	$\mathrm{E}=0.75$

EXAMPLE

Dwelling Computations for a Triple-wide Mobile Home	
HOME: Double-wide Section: $24^{\prime} \times 64^{\prime}=$	$24^{\prime} \times 64^{\prime}=1,536$
TAGALONG: $8^{\prime} \times 40^{\prime}=$	$8^{\prime} \times 40$ = 320
	1,856 Sq. Ft.
BASIC SQUARE FOOT PRICE	
Double: \quad x 828 (82.8\% of the total square footage) $=$	
Tagalong: $\quad \mathrm{x} .85 \times .172$	
TOTAL BASIC SQUARE FOOT PRICE	
TOTAL MOBILE HOME PRICE	
per sq. ft. $\times 1,856 \mathrm{sq}$. ft. $=$	

Executive residences (commonly referred to as Mansions) are individually designed with many varied interior appointments. They will normally have extensive ornamentation or special design features of top-quality materials and workmanship. There are six broad classifications based upon the amount and finish of the custom features encountered. Certain residences may fit into one grade by the overall size and exterior finish of the basic structure, and another by the quality of the interior finish and other appointments. However the price given, even with the grade factor adjustments, may not be high enough for the most luxurious residences, built without regard to cost, since each listed price represents the average of the costs within that grade range, excluding extremes.
Review the following base specifications to determine the proper grade for the residences being valued. A residence can be of one grade on the exterior and another on the interior. Each of these custom residences, when designed, will be heavily influenced by the owner: hence the varied qualities among exterior and interior details.
For consistency with the rest of Volume II, these executive residences have the same quality grades, AA, A, B, etc. The six grades, while all of the best-quality materials and workmanship, could easily be defined as Executive Residences Grade I, Grade II, etc. see below.

```
GRADE AA
GRADE VI QUALITY
GRADE A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GRADE V QUALITY
GRADE B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
```



```
GRADE D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GRADE II QUALITY
GRADE E ................................................. . . . GRADE I QUALITY
```

Note: The AA Plus (+) factor (found on Page 3-3) has been reduced since the last up date of Volume II. When that factor is applied to the base dwelling pricing (Pages 3-68 to 3-73), the resulting price can approach the Grade E Executive Residence price If this occurs the valuator should consider whether or not to obtain the price from the Executive Residence section.

ADJUSTMENTS

ATTACHMENTS AND OTHER FEATURES: Price from Residential pricing schedule.
POOLS: Price from the appropriate Residential pricing schedule.
OTHER BUILDING IMPROVEMENTS: Price from the appropriate Residential pricing schedule.

LARGE RESIDENCE MULTIPLIERS

To estimate a dwelling price for executive residences greater than 8,000 square feet, apply the following multipliers to the 8,000-square-foot base price (Pages $3-113$ to 3-116) for the appropriate exterior wall. Use these same multipliers for Upper and Half Story, Attic Finish and all Base Price Adjustments found on Page 3-117.

AREA	MULTIPLIER								
8200		10600		13000		15400		17800	
8400		10800		13200		15600		18000	
8600		11000		13400		15800		18200	
8800		11200		13600		16000		18400	
9000		11400		13800		16200		18600	
9200		11600		14000		16400		18800	
9400		11800		14200		16600		19000	
9600		12000		14400		16800		19200	
9800		12200		14600		17000		19400	
10000		12400		14800		17200		19600	
10200		12600		15000		17400		19800	
10400		12800		15200		17600		20000	

Residences of Grade AA Quality are individually designed and are characterized by the very finest quality of workmanship, finishes and appointments, and considerable attention to detail. Although residences at this quality level are inclusive of the very finest quality materials and workmanship, and each is unique in its design, these costs still do not represent the highest costs in residential construction.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the widerstudded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this finest-quality housing. Foamed concrete surfacing throughout is included for leveling of the floors, as well as for sound insulation. Floor covers include the very finest quality carpet or hardwoods (parquet or plank), as well as the very finest custom carpets and hardwood floors. Also, terrazzo, ceramic or quarry tile and imported tile of the very finest quality can be found. Marble and granite floor tile of the very finest quality in entries and/or in master bath, etc. Resilient floor covers of the very finest quality for areas of heavy wear, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of the very finest custom designs, and the custom entry and sash are of the highest quality. The very finest custom ornamentation and trim above windows, doors, roofline, etc., are displayed. Wall ornamentation of the finest wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavy-framed exterior walls are of 2 " x 6 " or 2 " x 8 " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of the very finest quality custom design, with many ridges and valleys. With heavy wood or steel rafters and sheathing. R oof covers are typically concrete or clay tile, copper or terne, or formed metal or wood shake or shingle. Additional features include good flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, as well as taped and painted drywall, with the very finest grades of paper or vinyl wall coverings, hardwood paneling or the very finest quality custom ceramic, marble, granite and glass tiles. Built-in book shelving and the very finest custom cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry, peninsula (double sided), etc. All kitchen cabinetry will display the very finest quality resins or baked enamel finishes, or the very finest natural, lacquer-finished woods. Drawer and door hardware will be of the very finest quality grades. Kitchen counters and sinktops will be of the very finest grades of solid plastics (Avonite, Corian, Nevamar, etc.), the very finest custom ceramic tiles, or the finest marble or granite and woods. Some floor plans may even
have two kitchens, one for everyday use, the other for entertaining or special occasions. At this quality, the kitchen can be a focal point of the residence. In some floor plans, though, the kitchen may be used only by servants. In such cases, the quality of the cabinetry may not equal that of other residences at this quality level. However, such a kitchen is usually larger in square footage, and this should offset the costs of the finer-quality cabinetry. The very finest quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops, splash and walls will be of the very finest quality custom ceramic tile, the very finest quality solid plastics and the very finest quality marble. The very finest quality tub and shower enclosures throughout. The very finest quality raised-panel, solid-hardwood or enameled doors with the very finest quality hardware. All baseboards, casings and moldings around doors, windows and cabinetry will have tight-mitered corners. Spacious walk-in closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. More than one master suite can be found in some plans. Other bedrooms can have sitting-room areas, with large baths and walk-in closets. Ceilings are plaster, as well as taped and painted drywall, with the very finest custom wallpaper or stenciling, suspended ceiling systems with the very finest light panels, decorative hardwood with coffered/vaulted panels with molding, the very finest embossed metal tiles, mirror-face panels, etc. For multistory homes, main stairways will be of custom hardwood with tile, stone, marble or granite and with the very finest hardwood or marble railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, including commercial-quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vacuumcleaning systems, to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerous well-positioned outlets and the very finest quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas, and finally, cabinetry lighting and undercounter lighting are found thoughout.

PLUMBING

Five of the very finest quality white or colored plumbing fixtures with one plumbing rough-in are included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, pedes-tal-type vanities (all designs), tub, tub with shower over, kitchen sink, wet bar, hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

Grade AA

Residences of Grade A Quality are individually designed and are characterized by the finest quality of workmanship, finishes and appointments, and considerable attention to detail. Residences at this quality level are inclusive of finest-quality materials and workmanship, and each is unique in its design.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the widerstudded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this finest-quality housing. Foamed concrete surfacing throughout is included for leveling of the floors, as well as for sound insulation. Floor covers include the finest-quality carpet or hardwoods (parquet or plank), as well as the finest custom carpets and custom hardwood floors. The finest-quality terrazzo, ceramic or quarry tile and the finest custom imported tiles can also be found. Marble and granite floor tile of the finest quality in entries and/or in master bath, etc. Resilient floor covers of the finest quality for areas of heavy wear, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of the finest custom designs, and the entry and sash are of the highest quality. The finest custom ornamentation and trim above windows, doors, roofline, etc., are displayed. Wall ornamentation of wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavyframed exterior walls are of 2 " x 6 " or 2 " x 8 " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of the finest-quality custom design, with many ridges and valleys. With heavy wood or steel rafters and sheathing. Roof covers are typically concrete or clay tile, copper or terne, or formed metal or wood shake or shingle. Additional features include good flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, as well as taped and painted drywall, with the finest grades of paper or vinyl wall coverings, hardwood paneling or the finest-quality custom ceramic, marble, granite and glass tiles. Built-in book shelving and the finest custom cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry and peninsula (double sided). All kitchen cabinetry will display the finest-quality resins or baked enamel finishes or the finest natural, lac-quer-finished woods. Drawer and door hardware will be the finest quality grades. Kitchen counters and sinktops will be of the finest grades of solid plastics (Avonite, Corian, Nevamar, etc.), the finest custom ceramic tiles, the finest marble or granite and woods. Some floor plans may even have two kitchens, one for everyday use, the other for entertaining or special occasions. At this quality and the next, the kitchen can be a focal point of the residence. In some floor plans though, the kitchen may be
used only by servants; in such cases the quality of the cabinetry may not equal that of other residences at this quality level. However, such a kitchen is usually larger in square footage, and this should offset the costs of the finer-quality cabinetry. The fi-nest-quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops, splash and walls will be of the finest-quality custom ceramic tile, the finestquality solid plastics and the finest-quality marble. The finest-quality tub and shower enclosures throughout. The finest-quality raised-panel, solid-hardwood or enameled doors with finest-quality hardware. All baseboards, casings and moldings around doors, windows and cabinetry will have tight-mitered corners. Spacious walk-in-closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. More than one master suite can be found in some plans. Other bedrooms can have sitting-room areas, with large baths and walk-in closets. Ceilings are plaster, as well as taped and painted drywall, with custom wallpaper or stenciling, suspended ceiling systems with the finest light panels, decorative hardwood with coffered/vaulted panels with molding, finest embossed metal tiles, mirror-face panels, etc. For multistory homes, main stairways will be of custom hardwood with tile, stone, marble or granite and have the finest hardwood or marble railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, including commercial-quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vacuum-cleaning systems, to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerous well-positioned outlets and the finest-quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas. Cabinetry lighting and undercounter lighting are found thoughout.

PLUMBING

Five finest-quality white or colored plumbing fixtures with one plumbing rough-in are included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, pedestal-type vanities (all designs), tub, tub with shower over, kitchen sink, wet bar, hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

Grade A plus (+)

Grade A minus (-)

GRADE B EXECUTIVE RESIDENCES

Residences of Grade B Quality are individually designed and are characterized by the very best quality of workmanship, finishes and appointments, and considerable attention to detail. Residences at this quality level are inclusive of finest-quality material and workmanship, and each is unique in its design.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the wider-studded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this finest-quality housing. Foamed concrete surfacing throughout is included for leveling of the floors, as well as for sound insulation. Floor covers include the very best quality carpet or hardwoods (parquet or plank), as well as very best custom carpets and custom hardwood floors. The very best quality terrazzo, ceramic or quarry tile and the finest custom imported tiles can also be found. Marble and granite floor tile of the finest quality in entries and/or in master bath, etc. Resilient floor covers of the very finest quality for areas of heavy wear, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of the finest custom designs, and the entry and sash are of the highest quality. The finest custom ornamentation and trim above windows, doors, roofline, etc., are displayed. Wall ornamentation of wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavyframed exterior walls are of 2 " x 6 " or 2 " $\times 8$ " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of the finest-quality design with many ridges and valleys. With heavy wood or steel rafters and sheathing. Roof covers are typically concrete or clay tile, copper or terne or formed metal or wood shake or shingle. Additional features include good flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, as well as taped and painted drywall, with the very best grades of paper or vinyl wall coverings, hardwood paneling or the very best quality custom ceramic, marble, granite and glass tiles. Built-in book shelving and the finest custom cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry, peninsula (double sided), etc. All kitchen cabinetry will be of the very best quality resins or baked enamel finishes or the very best natural, lacquer-finished woods. Drawer and door hardware will be the very best quality grades. Kitchen counters and sinktops will be of the very best grades of solid plastics (Avonite, Corian, Nevamar, etc.), the very best custom ceramic tiles, the finest marble or granite and woods. Some floor plans may even have two kitchens, one for everyday use, the other for entertaining or special occasions. The very best quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops,
splash and walls will be of the very finest quality custom ceramic tile, finest-quality solid plastics and finest-quality marble. The finest-quality tub and shower enclosures throughout. Finest-quality raised-panel, solid-hardwood or enameled doors with fi-nest-quality hardware. All baseboards, casings and moldings around doors, windows and cabinetry will have tight-mitered corners. Spacious walk-in closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. More than one master suite can be found in some plans. Other bedrooms can have sitting-room areas, with large baths and walk-in closets. Ceilings are plaster, as well as taped and painted drywall, with custom wallpaper or stenciling, suspended ceiling systems with the finest light panels, decorative hardwood with coffered/vaulted panels with molding, finest embossed metal tiles, mirror-face panels, etc. For multi-story homes, main stairways will be of custom hardwood with tile, stone, marble or granite and have the very best hardwood or marble railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, including commercial-quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vacuum-cleaning systems, to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerouswell-positioned outlets and the very best quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas. Cabinetry lighting and undercounter lighting are also included

PLUMBING

Five very best quality whites or colored plumbing fixtures with one plumbing rough-in are included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, pedestal-type vanities (all designs), tub, tub with shower over, kitchen sink, wet bar, hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

Grade B plus (+)

Grade B

Grade B

Residences of Grade C Quality are individually designed and are characterized by the best quality of workmanship, finishes and appointments, and considerable attention to detail.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the widerstudded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this best-quality housing. Foamed concrete surfacing throughout is included for leveling of the floors, as well as for sound insulation. Floor covers include the best-quality carpetor hardwoods (parquet or plank), as well as best custom carpets and custom hardwood floors. Terrazzo, ceramic or quarry tile of the best quality and the best custom imported tiles can also be found. Marble and granite floor tile of best quality in entries and/or in master bath. Resilient floor cover of the finest quality for areas of heavy wears, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of best custom design, and entry and sash are high quality. The best custom ornamentation and trim above windows, doors, roofline, etc., are displayed. Wall ornamentation of wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavy-framed exterior walls are of 2 " $\times 6$ " or 2 " $\times 8$ " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of the best-quality custom design with many ridges and valleys. With heavy wood or steel rafters and sheathing. Roof covers are typically concrete or clay tile, copper or terne or formed metal or wood shake or shingle. Additional features include ood flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, as well as taped and painted drywall, with best grades of paper or vinyl wall coverings, hardwood paneling, custom ceramic tile or best-quality marble and glass tiles. Built-in book shelving and the best custom cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry, peninsula (double sided), etc. All kitchen cabinetry will exhibit the best-quality resins or baked enamel finish or the best natural, lacquer-finished woods. Drawer and door hardware will be of the best-quality grades. Kitchen counters and sinktops will be of the best grades of solid plastics (Avonite, Corian, Nevamar, etc.), cultured marble, the best custom ceramic, marble or granite tile and woods. Some floor plans may even have two kitchens, one for everyday use, the other for entetaining or special occasions. The best-quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops, splash and walls will be of best-quality custom ceramic tile, finest-quality laminates, cultured marble and best-quality marble
tiles. The best-quality tub and shower enclosures throughout. The best-quality raised -panel solid hardwood or enameled doors with best-quality hardware. All baseboards, casings and moldings around doors, windows and cabinetry will have tightmitered corners. Spacious walk-in closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. More than one master suite can be found in some plans. Other bedrooms can have sitting-room areas, with large baths and walk-in closets. Ceilings are plaster, as well as taped and painted drywall, with custom wallpaper or stenciling, suspended ceiling systems with best light panels, decorative hardwood with coffered/vaulted panels with molding, best embossed metal tiles, etc. For multi-story homes, main stairways will be of custom hardwood with tile, stone, marble or granite and with the best hardwood railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, including commercial-quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vacuum-cleaning systems, to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerous well-positioned outlets and best-quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas, as well as cabinetry lighting and undercounter lighting, will be found.

PLUMBING

Five best-quality white or colored plumbing fixtures with one plumbing rough-in ar included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, pedestal-type vanities, tub, tub with shower over, kitchen sink, wet bar or hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

Grade C plus (+)

Grade C

GRADE C EXECUTIVE RESIDENCES

Grade C minus (-)

Residences of Grade D Quality are generally individually designed and are characterized by the highest quality of workmanship, finishes and appointments, and considerable attention to detail.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the wider-studded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this high-quality housing. Foamed concrete surfacing throughout is included for leveling of the floors, as well as for sound insulation. Floor covers include best-quality carpet or hardwoods (parquet or plank), as well as high-quality custom carpets and hardwood floors. Bestquality terrazzo, ceramic or quarry tile and custom, imported tiles can also be found. Marble and granite floor tile of very good quality in entries and/or in master bath. Resilient floor cover of the very best quality for areas experiencing heavy wears, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of highest-quality design, and entry and sash are high quality. Custom ornamentation and trim above windows, doors, roofline, etc. Wall ornamentation of wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavy-framed exterior walls are of 2 " x 6 " or $2 " \times 8$ " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of high-quality custom design with many ridges and valleys. With heavy wood or steel rafters and sheathing. Roof covers are typically concrete or clay tile, copper or terne, or formed metal or wood shake or shingle. Additional features include good flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, and taped and painted drywall with highest grades of paper or vinyl wall coverings, hardwood paneling, ceramic tile or very good quality marble and glass tiles. Built-in book shelving and custom cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry, peninsula (double sided), etc. All kitchen cabinetry will exhibit the finest-quality paint or laminates or high-quality, custom, natural, lacquer-finished woods. Drawer and door hardware will be of the highest-quality grades. Kitchen counters and sinktops will be of the highest grades of laminates, solid plastics (Avonite, Corian, Nevamar, etc.), cultured marble, ceramic tile and wood. Highest-quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops, splash and walls will be of highest-quality ceramic tile, highest-quality laminates, cultured marble and very good quality marble and custom ceramic tiles. Highest-quality tub and shower enclosures throughout. Highest-quality raised-panel solid-hardwood or enameled doors
with highest-quality hardware. All baseboards, casings and moldings around doors, windows and cabinetry will have tight-mitered corners. Spacious walk-in closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. Ceilings are plaster, as well as taped and painted drywall, suspended ceiling systems with light panels, decorative hardwood with coffered/vaulted panels with molding, metal tiles, etc. For multistory homes, stair ways will be of custom hardwood and tile, with hardwood railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, in- cluding commercial-quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vacuum-cleaning systems, to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerous well-positioned outlets and high-quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas, and finally, cabinetry lighting and undercounter lighting will be found throughout.

PLUMBING

Five high-quality white or colored plumbing fixtures with one plumbing rough-in are included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, tub, tub with shower over, kitchen sink, wet bar or hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

GRADES D AND E EXECUTIVE RESIDENCES

Residences of Grade E Quality are generally individually designed and are characterized by the custom quality of workmanship, finishes and appointments, and considerable attention to detail.

FOUNDATION

Poured concrete or concrete block perimeter walls to accommodate the widerstudded exterior walls or wide masonry exterior walls and interior bearing-wall foundation. Concrete footing, drain tiles, full basement.

FRAME

A partial steel frame is included to allow for long spans in great rooms, living rooms, etc.

FLOOR STRUCTURE

Wood or steel joists and subfloor on the first and upper floors. Joists are properly spaced to accommodate the additional interior components of this custom-quality housing. Foamed concrete sur facing throughout is included for leveling of the floors, as well as for sound insulation. High-quality carpet or hardwoods (parquet or plank), as well as custom carpets and hardwood floors are used. Floor covers include highquality terrazzo, ceramic or quarry tile, and custom, imported tiles can also be found. Marble and granite floor tile of good quality in entries and/or in master bath. Resilient floor covers of the best quality for areas experiencing heavy wear, in laundry room, bonus rooms, etc.

EXTERIOR WALL

Fenestration is of custom design, and entry and sash are custom quality. Some cus tom ornamentation and trim above windows and doors. Wall ornamentation of wood, select brick, cut stone, glass block, local stone, marble, granite, etc., is used throughout the exterior walls. Extra-heavy-framed exterior walls are of 2 " x 6 " or 2 " x 8 " or appropriate steel stud construction with some pocket doors. Masonry exterior walls are approximately 12 inches thick.

ROOF

A roof of custom design with many ridges and valleys. With heavy wood or steel rafters and sheathing. Roof covers are typically concrete or clay tile, copper or terne or formed metal or wood shake or shingle. Additional features include good flashing, ample gutters and downspouts, along with some skylights. Roofline is of a steep slope with a pitch up to 6:12 for one-story homes. Large roof overhangs up to 3 feet can also be found.

INTERIOR FINISH

Interior walls are plaster, as well as taped and painted drywall, with custom grades of paper or vinyl wall coverings, hardwood paneling, ceramic tile or good-quality marble and glass tiles. Built-in book shelving and ample cabinets, which may include such specialty cabinetry items as a cooking island, wet bar, built-in desk, walk-in pantry, peninsula (double sided), etc. All kitchen cabinetry will exhibit best-quality paint or laminates or custom, natural, lacquer-finished woods. Drawer and door hardware will be custom-quality grades. Kitchen counters and sinktops will be custom-grade laminates, solid plastics (Avonite, Corian, Nevamar, etc.), cultured marble, ceramic tile and wood. Custom-quality pullmans or vanity cabinets in the bathrooms and dressing areas. Countertops, splash and walls will be of high-quality ceramic tile, highestquality laminates, cultured marble and good-quality marble tiles. Custom-quality tub and shower enclosures throughout. Custom-quality, raised-panel, solid hardwood or enameled doors with custom-quality hardware. All baseboards, casings, and mold-
ings around doors, windows, and cabinetry will have tight-mitered corners. Spacious walk-in closets, his and hers in the master suite, with many built-in features. Large linen storage closets and pantry are fully shelved. Master suite can have sitting room, exercise room, private den, vaulted or cathedral ceilings, etc. More than one master suite can be found in some plans. Ceilings are plaster, as well as taped and painted drywall, suspended ceiling systems with light panels, decorative hardwood with coffered/vaulted panels with molding, metal tiles, etc. For multistory homes, stair ways will be of custom hardwood, with hardwood railings. Not included in the base dwelling price, these homes will include numerous built-in appliances, including commercial quality range tops, double ovens, dishwashers, trash compactors, refrigerators and freezers, custom stainless steel or copper exhaust fans and hoods, intercoms and vac-uum-cleaning systems to name a few.

HEATING/COOLING

A complete heating/cooling system with multiple controls, large capacity and insulated ductwork to all main areas is included in the basic residence cost. The system is based on an extreme climate.

LIGHTING

Numerous well-positioned outlets and custom-quality fixtures throughout. Large luminous fixtures in kitchen, bath and dressing areas. Cabinetry lighting and undercounter lighting.

PLUMBING

Five custom-quality white or colored plumbing fixtures with one plumbing rough-in are included in the basic residence cost. The fixtures can include any of the following: water heater, laundry tray, tiled shower stall, toilet, bidet, vanities, tub, tub with shower over, kitchen sink, wet bar or hydrotherapy tub (Jacuzzi).

ENERGY PACKAGE

Dwelling base costs are for residences that meet building codes as of the last manual update, and include the costs of meeting current energy guidelines for extreme climate locations. Adjustments for residences that either fall below the current codes or exceed the current codes should be made using a Cost and Design adjustment as needed. See Chapter two for Cost and Design application.

GradeE plus (+)

GradeE

EXECUTIVE DWELLING PRICING SCHEDULE

FRAME BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	$\begin{aligned} & \text { 1ST STORY } \\ & \text { \& BSMT. } \end{aligned}$	$\begin{aligned} & \hline \text { UPPER } \\ & \text { STORY } \end{aligned}$	$\begin{aligned} & \hline \text { HALF } \\ & \text { STORY } \end{aligned}$
1600			
1800			
1900			
2000			
2100			
2200			
2300			
2400			
2500			
2600			
2700			
2800			
2900			
3000			
3100			
3200			
3300			
3400			
3500			
3600			
3700			
3800			
3900			
4000			
4100			
4200			
4300			
4400			
4500			
4600			
4700			
4800			

FRAME BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	$\begin{aligned} & \text { 1ST STORY } \\ & \text { \& BSMT. } \end{aligned}$	UPPER STORY	$\begin{aligned} & \text { HALF } \\ & \text { STORY } \end{aligned}$
4900			
5000			
5100			
5200			
5300			
5400			
5500			
5600			
5700			
5800			
5900			
6000			
6100			
6200			
6300			
6400			
6500			
6600			
6700			
6800			
6900			
7000			
7100			
7200			
7300			
7400			
7500			
7600			
7700			
7800			
7900			
8000			

MASONRY VENEER BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	$\begin{aligned} & \text { 1ST STORY } \\ & \text { \& BSMT. } \end{aligned}$	UPPER STORY	$\begin{aligned} & \hline \text { HALF } \\ & \text { STORY } \end{aligned}$
$\begin{aligned} & 1600 \\ & 1800 \\ & 1900 \\ & 2000 \end{aligned}$			
2100 2200 2300 2400			
$\begin{aligned} & 2500 \\ & 2600 \\ & 2700 \\ & 2800 \end{aligned}$			
$\begin{aligned} & 2900 \\ & 3000 \\ & 3100 \\ & 3200 \end{aligned}$			
$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & 3600 \end{aligned}$			
$\begin{aligned} & 3700 \\ & 3800 \\ & 3900 \\ & 4000 \end{aligned}$			
$\begin{aligned} & 4100 \\ & 4200 \\ & 4300 \\ & 4400 \end{aligned}$			
$\begin{aligned} & 4500 \\ & 4600 \\ & 4700 \\ & 4800 \end{aligned}$			

| MASONRY VENEER BASE PRICES | | |
| :---: | :---: | :---: | :---: |
| (COSTS PER SQUARE FOOT) | | |

EXECUTIVE DWELLING PRICING SCHEDULE

CONCRETE BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	1ST STORY \& BSMT.	$\begin{aligned} & \hline \text { UPPER } \\ & \text { STORY } \end{aligned}$	$\begin{aligned} & \text { HALF } \\ & \text { STORY } \end{aligned}$
$\begin{aligned} & 1600 \\ & 1800 \\ & 1900 \\ & 2000 \end{aligned}$			
$\begin{aligned} & 2100 \\ & 2200 \\ & 2300 \\ & 2400 \end{aligned}$			
$\begin{aligned} & 2500 \\ & 2600 \\ & 2700 \\ & 2800 \end{aligned}$			
$\begin{aligned} & 2900 \\ & 3000 \\ & 3100 \\ & 3200 \end{aligned}$			
$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & 3600 \end{aligned}$			
$\begin{aligned} & 3700 \\ & 3800 \\ & 3900 \\ & 4000 \end{aligned}$			
$\begin{aligned} & 4100 \\ & 4200 \\ & 4300 \\ & 4400 \end{aligned}$			
$\begin{aligned} & 4500 \\ & 4600 \\ & 4700 \\ & 4800 \end{aligned}$			

CONCRETE BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	$\begin{aligned} & \text { 1ST STORY } \\ & \text { \& BSMT. } \end{aligned}$	UPPER STORY	$\begin{aligned} & \hline \text { HALF } \\ & \text { STORY } \end{aligned}$
4900			
5000			
5100			
5200			
5300			
5400			
5500			
5600			
5700			
5800			
5900			
6000			
6100			
6200			
6300			
6400			
6500			
6600			
6700			
6800			
6900			
7000			
7100			
7200			
7300			
7400			
7500			
7600			
7700			
7800			
7900			
8000			

BRICK OR STONE BASE PRICES (COSTS PER SQUARE FOOT)				BRICK OR STONE BASE PRICES (COSTS PER SQUARE FOOT)			
AREA	$\begin{array}{\|l} \hline \text { 1ST STORY } \\ \text { \& BSMT. } \end{array}$	UPPER STORY	HALF STORY	AREA	$\begin{aligned} & \text { 1ST STORY } \\ & \text { \& BSMT. } \end{aligned}$	UPPER STORY	$\begin{aligned} & \hline \text { HALF } \\ & \text { STORY } \end{aligned}$
$\begin{aligned} & 1600 \\ & 1800 \\ & 1900 \\ & 2000 \end{aligned}$				$\begin{aligned} & 4900 \\ & 5000 \\ & 5100 \\ & 5200 \end{aligned}$			
$\begin{aligned} & 2100 \\ & 2200 \\ & 2300 \\ & 2400 \end{aligned}$				$\begin{aligned} & 5300 \\ & 5400 \\ & 5500 \\ & 5600 \end{aligned}$			
$\begin{aligned} & 2500 \\ & 2600 \\ & 2700 \\ & 2800 \end{aligned}$				$\begin{aligned} & 5700 \\ & 5800 \\ & 5900 \\ & 6000 \end{aligned}$			
$\begin{aligned} & 2900 \\ & 3000 \\ & 3100 \\ & 3200 \end{aligned}$				$\begin{aligned} & 6100 \\ & 6200 \\ & 6300 \\ & 6400 \end{aligned}$			
$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & 3600 \end{aligned}$				$\begin{aligned} & 6500 \\ & 6600 \\ & 6700 \\ & 6800 \end{aligned}$			
$\begin{aligned} & 3700 \\ & 3800 \\ & 3900 \\ & 4000 \end{aligned}$				$\begin{aligned} & 6900 \\ & 7000 \\ & 7100 \\ & 7200 \end{aligned}$			
$\begin{aligned} & 4100 \\ & 4200 \\ & 4300 \\ & 4400 \end{aligned}$				$\begin{aligned} & 7300 \\ & 7400 \\ & 7500 \\ & 7600 \end{aligned}$			
$\begin{aligned} & 4500 \\ & 4600 \\ & 4700 \\ & 4800 \end{aligned}$				$\begin{aligned} & 7700 \\ & 7800 \\ & 7900 \\ & 8000 \end{aligned}$			

EXECUTIVE DWELLING PRICING SCHEDULE - BASE PRICE ADJUSTMENTS

BASEMENTS							
AREA	FULL	PARTIAL	WALKOUT	AREA	FULL	PARTIAL	WALKOUT
1600				4900			
1800				5000			
1900				5100			
2000				5200			
2100				5300			
2200				5400			
2300				5500			
2400				5600			
2500				5700			
2600				5800			
2700				5900			
2800				6000			
2900				6100			
3000				6200			
3100				6300			
3200				6400			
3300				6500			
3400				6600			
3500				6700			
3600				6800			
3700				6900			
3800				7000			
3900				7100			
4000				7200			
4100				7300			
4200				7400			
4300				7500			
4400				7600			
4500				7700			
4600				7800			
4700				7900			
4800				8000			

QUALITY GRADE FACTOR	
AA	1.65
A	1.40
B	1.25
C	1.00
D	.90

	BASE PRICE ADJUSTMENTS
CrawIspace	
Full Finish	
Recreation Room Finish	
Unfinished Living Area	

HEATING

No Heat - Deduct (-)
Heat Only - Deduct (-)
Air Conditioning - Separate Ducts
GEO Thermal

PLUMBING
Base Price Includes 5 Fixtures w/ no Rough-Ins
Add/Deduct for each fixture greater or less than 5
Add for each Rough-In
Add for Whirlpool Tub

As given in this section, are to be used with both methods and may be added to the residence cost to estimate the complete cost of the improvements.
For large installations of fencing or walls, such as subdivision uses or farms, use the following factors: 400-1,000 linear feet, .95; 1,000-3,000 linear feet, .90; 3,000-6,000 linear feet, .85 ; over 6,000 linear feet, . 80 .

CHAIN-LINK FENCES

Average cost per linear foot, including complete installation on 2" round or " H " posts set in concrete, 10 ' on centers. Gates are priced on a per each basis adding 25% for sliding gates.

```
    MYPE [4,
    2" mesh, 9# wire
        #11 wire
    add for rails
    add for 3-strand barbed wire
    add for barbed coils
    add for privacy stats
Gates, 3' wide
    5' wide
    10' wide
    15' wide
    20' wide
    25' wide
Aluminum or vinyl covered,
2" mesh, 9# wire
            #11 wire
        add for rails
Gates, 3' wide
    5' wide
    10' wide
    15' wide
    20' wide
    25' wide
WOOD FENCES - Price per linear foot including complete installation.
```

Solid board, horizontal or vertical
6'
5 ,
Solid prefabricated panels, lattice top
6
4'
. .

Split redwood, solid palings
\qquad

```
    5'
    ' . . . . . . . . . . . . . . . . . . . . . . . . . . .
```


Basketweave
6 '
5

30" - 40"
50" - 60"
two rails, split, 24 " - 36 " high
three rails, split, $36^{\prime \prime}-48^{\prime \prime}$ high
four rails, split, 42" - 54" high
6 ' stockade, half pole whole
Wood gates, per sq. ft.

VINYL FENCES - Price per linear foot including complete installation.

```
Spaced slat panels
    6'
    4' - 5' .............................
    Basketweave, 5'
Solid board panels
    6'
    4' - 5'
```

MASONRY WALLS - Priced per linear foot including complete installation including normal footings.

	HEIGHT				
TYPE	4'	6'	8'	10'	12'
4" block with pilasters, reinforced					
6" block, reinforced					
8" block, reinforced					
Brick, 8" thick 12" thick					
8" block backup					
8" precast, retaining post and solid panels					

METAL FENCES AND GRILLES - Priced per square foot including installation.

	HEIGHT				
TYPE	4'	6'	8'	10'	12'

Hand-forged wrought iron or modular, steel . .
gates, per square foot

PAVING/DECKING

Typical costs per square foot, except as otherwise specified. For paved areas between 500 and 1,000 square feet, use a factor of .90 . 1,000 to 3,000 square feet, use a factor of .80. Small separate pours of 100 square feet or less may run 25% higher, hand mixed and spread, up to 75% more.

2" asphalt
3" asphalt
4" asphalt
2" aggregate base
3" aggregate base
4" aggregate base
2 " concrete, unreinforced
3 " concrete, unreinforced
4 " concrete, unreinforced

2" concrete, mesh reinforced
3" asphalt . 3 " concrete, mesh reinforced
4" asphalt .
4 " concrete, mesh reinforced
2" aggregate base
2" concrete, bar reinforced
3" concrete, bar reinforced
4 " concrete, bar reinforced
salt finish
4 " sand base
2" gravel base
3" gravel base
$4 "$ gravel base

```
Concrete sidewalk
Asphalt block pavers on concrete base
Brick on concrete, grouted, flat
on edge
Concrete pavers on concrete base
Flagstone on concrete, grouted
Tile, quarry on concrete base
Wood, on grade
    2" x 4" flat
    2" x 4" on edge
Steps on ground, per. sq. ft. of tread, brick on concrete
    concrete
Snow melting, including controls, electric
    hydronic, large areas (excluding heat source)
```


SURFACE PARKING LOTS

The following are based on a cost per space and average area per space including asphalt paving, striping, some lighting, landscaping and drainage. Older lots, sized for large cars or lots designed for much in and out traffic tend toward the higher area per space, while newer lots sized for smaller cars or lots designed for maximum parking tend toward the lower side of the range.

COST PER SPACE

Low Cost (285 Sq. Ft./Space) Average (315 Sq. Ft./Space) Good (345 Sq. Ft./Space)

LANDSCAPING - Typical costs as specified.

Soil preparation, per sq. ft., fine grading mulching top dressing or bedding										
Lawns, per sq. ft., seeding hydroseeding only sodded Ground cover, per sq. ft., gravel or wood chips										
metal redwood timber of ties Shrubs and hedges, each, small medium large Trees, each, small, 15 gal. -20 " box medium, 24' -36 " box large, 42 " box or larger Tree grates, including frame, per sq. ft. Planter boxes, per sq. ft., concrete, precast cast stone, ornate troughs fiberglass wood Planters, each, round, concrete, 24" diameter 48" diameter tree size, 3' - 10" diameter Bollards, each, wood concrete add for lighting										
medium large										
medium, 24' - 36 " box large, 42" box or larger										
Tree grates, including frame, per sq. ft.										
cast stone, ornate troughs fiberglass wood										
Planters, each, round, concrete, 24 " diameter 48" diameter tree size, 3' - 10" diameter Bollards, each, wood concrete add for lighting										

Low Average High Cost
*Complete residential developments
*The prices above are to be applied to the entire landscape area including common areas, and are used when actual unit pricing is not feasible. Costs will vary greatly due to the number of variables involved. The cost ranges include soil preparation and some post-installation maintenance commensurate with the quality, excluding extremes.

LOW COST areas have a minimum number of 1 - to 5 -gallon shrubs, small trees and ground-cover plants proportioned for a light visual effect, manual irrigation and seeded lawn. AVERAGE COST areas include an average number of 3 - to 5 -gallon shrubs, small to large trees, closer spacing of small ground-cover plants, automatic irrigation and seeded lawn. HIGH COST areas will have a high visual content of 5 - to 15 -gallon shrubs, a greater proportion of large trees, closely spaced ground cover with top dressing, automatic irrigation, seeded lawn and sodded turf areas.

LAWN SPRINKLERS

Cost per square foot installed, including trenching and backfill. Intricate shrub-type strip areas may be twice as high as conventional systems. For automatic control, add perstation.

Conventional, small areas
Rian Bird or Rain Jet systems, large areas
OUTDOOR LIGHTING - Typical cost range per fixture.

```
Spotlights or illuminaries, decorative, each
    underwater lighting
    low vlotage
Post lantern
Floodlights, per fixture, high-pressure sodium
    LED
    mercury vapor
    fluorescent or quartz-iodine
    incandescent
Poles, metal, per lin. ft.
Poles, metal, per lin. ft. (ornamental)
    add per bracket
```

CANOPIES - Cantilevered portion of building that extends over and entrance
Wood Frame
Steel Frame

GAZEBO - Freestanding roofed structure, typically open on the sides

```
Standard
Deluxe
```


BASE SPECIFICATIONS
FOUNDATION - Concrete footings. WALLS - Open, one
side, wood, metal on pole frame or metal on steel frame.
FLOOR - Concrete. ROOF - Double pitch, asphalt
shingles or metal roofing on wood rafters and framing.
OTHER FEATURES - Some end-wall windows, some cab-
inets, electirc lighting and water service.

BASE PRICES - 12' HIGH			
STRUCTURE TYPE	Wood Frame/ Wood Siding BT1	Pole Framel Metal Siding BT2	Steel Frame/ Steel Siding BT3
Area	Price per Square Foot		
100			
200			
300			
400			
500			
1000			
1500			
2000			
2500			
3000			
+ 2\% Foot in Height			

BASE PRICES - 12' HIGH			
STRUCTURE TYPE	Wood Frame/ Wood Siding BT4	Pole Frame/ Metal Siding BT5	Steel Frame/ Steel Siding BT6
Area	Price per Square Foot		
100			
200			
300			
400			
500			
1000			
1500			
2000			
2500			
3000			
$+2 \%$ Foot in Height			

BOAT STORAGE RACKS

Costs of storage racks are included in the buildings and sheds. Costs of racks only are as follows:
HIGH
AVERAGE
MINIMUM
Sq. Ft. costs:

BOAT DOCKS

The following are typical cost ranges per square foot including fenders, railings, utilities, and miscelaneous items commensurate with the type and quality, exclusive of buildings.

LIGHT CONSTRUCTION	$2 "$ floating deck, light posts
(Wood girders, nailed)	$2 "$ decking, light posts
MEDIUM CONSTRUCTION	$3 "$ decking, light piling
(Wood girders, bolted)	$2 "$ floating deck, winch or light piling
$3 "$ decking, light piling	

WATER WELLS

Average costs of water wells, 100 to 1,000 feet deep. Costs include drilling, casings, gravels pack, setup, testing, and miscellaneous costs up to a point of actual operation excluding pumps.

SEWAGE DISPOSAL

SEPTIC TANK Average costs installed and connected in normal soil

SEPTIC MOUNDS

Engineered drainfield used in areas where septic systems are more prone to failure due to extremely permeable or impermeable soils. Typically soils with shallow cover over porous bedrock, and soils that have a high seasonal water table.

	AVERAGE
1000 gallon	
2000	
4000 .	

PUBLIC UTILITIES

```
                                    Cost
Water main, 6" ducting iron, lin. ft.
    6" asbestos cement
    6" steel
    6" plastic
    add or deduct per inch of diameter
Water lateral, 1" lin. ft.
```

VALUATION 4-1
BASE PRICES 4-1
QUALITY FACTOR 4-1
APPLICATION 4-1
NOTE 4-2
INCOME APPROACH 4-2
DEPRECIATION 4-2
APARTMENT LISTING INSTRUCTIONS 4-3
Type 4-3
Grade 4-3
Number of Bedrooms 4-3
Baths 4-3
Number of Units 4-3
Rental 4-3
Income Data 4-4
Actual Rent (Contract Rent) 4-4
Vacancy 4-4
Economic Rent 4-4
Expenses 4-4
APARTMENT COMPUTATIONS 4-5
PERSONNELDATA 4-7
PHOTOGRAPHS 4-8
APARTMENT PRICING SCHEDULE 4-10

An apartment is a residential living unit with the same living accommodations normally found in a single-family-type residence. An apartment house is a multifamily residence containing two or more residential living units and generally providing the with a number of common facilities and services. Two or more apartment buildings operating as a single unit are generally referred to as an apartment complex.

Recent years have seen a tremendous increase in multifamily residential developments, especially in the areas of apartment complexes and high-rise apartment buildings. Each of these offers complete living accommodations with all the modern conveniences. In addition, they generally provide a variety of recreational facilities and personal services for their occupants.

VALUATION

As with other types of property, the starting point for the appraiser is to determine the replacement cost new of the apartment building. An Apartment Pricing Schedule is provided in the Manual to assist the appraiser in doing so.

Apartment units found in a given apartment building or complex of buildings vary in size and arrangement. They may be one-room efficiency units consisting of a bedroom and kitchenette; two-room studio units consisting of a bedroom and living room/den and kitchenette combination; or conventional units consisting of a kitchen, dining area, living room and one or more bedrooms. Each apartment has one or more bathrooms, and conventional units often have a separate dining room and a den or family room.

The most significant variable in determining the replacement cost of an apartment building is the size of the individual units. The Pricing Schedule provided in this section is designed to account for this variation.

BASE PRICES

Base square foot prices have been developed for typical C Grade apartment units based on average unit sizes, and at various floor levels, for wood joist, fire resistant, and reinforced concrete construction. Base prices are also given for both brick (or equal) and frame/concrete block exterior walls in the wood joist construction type.

The foundation and roof construction are included in the first-floor prices, making the schedule applicable to both one-story and multistory buildings.

QUALITY FACTOR

The schedule prices are for normal C Grade construction erected with average-quality materials and workmanship throughout. A table of Quality Factors is provided to adjust the C Grade prices to account for variations in construction quality. Reference should be made to the Residential Grade Specifications and the determination and use of Quality Grade and Design Factors detailed in the Residential Section of the Manual.

APPLICATION

Application of the schedule involves the selection of the appropriate base price and adjusting the price to account for any variations between the subject building and the model building.

NOTE

The Apartment Pricing Schedule is designed for apartment buildings of two to seven units.

INCOME APPROACH

Apartment buildings, regardless of their type, are built, bought and sold as investment or income-producing property. The appraisal of apartments follows the same procedures discussed in the sections of the Manual dealing with the Capitalization or Income Approach to value. The basic procedure is 1) the collection and analysis of income and expense data in order to determine the net return; and 2) the capitalization of the net return into an indication of value, generally by using either the Building or the Land Residual Technique.

DEPRECIATION

Apartment building depreciation factors should be based on personal observation. Consideration should be given to physical wear and tear, deferred maintenance and inherent obsolescence.

APARTMENT LISTING INSTRUCTIONS

TYPE

Space is provided to enter the type of apartment building of two (2) to seven (7) units, being described as:

Enter 1: GARDEN to indicate an apartment building of the garden variety. This type is the most common and normally ranges from one (1) to two (2) stories.

Enter 2: TOWNHOUSE to indicate an apartment building which has its own outside entrance and serves as a completely self-suffcient unit except for the fact that it ordinarily shares a common wall with adjacent units. Townhouses are usually two-story units with the living area on the first floor and bedrooms on the second floor.

Enter 3: OTHER to indicate especially unusual complexes that do not fit into the categories mentioned above.

GRADE

Enter the letter grade (AA, A, B, C, D or E) corresponding to the appropriate quality.

NUMBER OF BEDROOMS

Space is provided to enter the number of bedrooms per apartment unit. Bedrooms should be counted if they were constructed for use as a bedroom even though they may be utilized for another purpose.

BATHS

Space is provided to enter the number of bathrooms per apartment unit.
One bathroom = 1.0
One and one-half bathrooms $=1.5$, etc.

NUMBER OF UNITS

Space is provided to enter the total number of individual units contained in the apartment building, each having a specified number of bedrooms and bathrooms for a given type.

RENTAL

Space is provided to enter the gross monthly rental paid for individual units of a given type having a specified number of bedrooms and bathrooms.

INCOME DATA

ACTUAL RENT (Contract Rent)

Space is provided to enter the total amount of potential gross annual rent paid for the use of land and improvements under lease contracts.

VACANCY

Space is provided to enter the amount deducted from potential annual gross income to reflect the effect of probable vacancy and turnover, or nonpayment of rent by tenants, expressed as a percent.

ECONOMIC RENT

Space is provided to enter the total amount of annual gross economic rent for the use of land and improvements. Economic rent may be defined as the rental income that a property should command on the open market.

EXPENSES

Space is provided to enter the total annual amount of expenses necessary to obtain and maintain income. This should include operating expenses, fixed expenses, and reserves for replacements, expressed as a percentage.

The following is an explanation of the procedure to manually calculate apartment building values from the apartment pricing schedule located in this Manual.

1. Enter the exterior wall construction in the appropriate column - I - Finished Basement, 2 - First Floor, 3 - Upper Floor.
2. Enter the average unit size per level.
3. Enter the appropriate Base Price per square foot from the Apartment Pricing Schedule, based on type of exterior wall construction, floor level and average unit size.
4. Enter the square footage based on exterior measurements for each floor level.
5. Multiply the Base Price by the square footage for each level, and enter the amount in the corresponding subtotal column.
6. Add the amounts located in the subtotal columns, and enter the result in the Adjusted Base Price area.
7. Calculate the unfinished basement cost from the Apartment Pricing Schedule, and enter the amount in the Unfinished Basement area.
8. Add or deduct the amount of value for an excess or lack of plumbing fixtures, based on the plumbing specifications in the Apartment Pricing Schedule, and enter the amount in the plumbing area.

Note: Do not add an unfinished basement cost when utilizing the finished basement column. This entry is for crawl space or unfinished basement only.
9. Calculate the cost for central air conditioning based on average unit size and square footage from the Apartment Pricing Schedule, and enter the amount in the air conditioning area.
10. Calculate the cost of any attachments and other features from the appropriate residential listing instructions and pricing schedules, and enter the amount in the attachments area.
11. Total the following:
a. Adjusted Base
b. Unfinished Basement
c. Plumbing
d. Air Conditioning
e. Attachments
and enter the amount in the subtotal portion of the computation ladder.
12. Multiply the appropriate grade factor by the subtotal, and enter the amount in the Base Value area.
13. Enter the local modifier factor utilized by the jurisdiction in the local modifier portion of the computation ladder.

	OTHER FEATURES	AMOUNT
551	1 MASONRY ADJ [] \quad x	
552	2 RECROOM	
553	3 WB FP:STACKS - OPENINGS	
554	4 METALFP: STACKS _	
555	5 GAS FP _	
556	6 BASEMENT GARAGE, NO.CARS -	
557	7 BUILT-IN GARAGE, NO. CARS	
558	8 DORMERS, TYPE: \quad LF.	
	ROOF ADJUSTMENT - METAL	
	Whole house Generator	
559	9 TOTAL ADDITIONAL OTHER FEATURE AMT	
TOTAL OTHER FEATURE AMT.		

*Base price for fire-resistant construction $=$ base price x

820	APARTMENT DATA						
TYPE	GR	BEDS	BATHS	NO.UNITS	RENTAL		
$1 \underline{1}$	\underline{C}	$\underline{2}$	$\underline{1} \cdot \underline{0}$	$--\underline{6}$	$\underline{4} \underline{7} \underline{5}$		
$2-$	-	-	$-\bullet-$	---	---		
$3-$	-	-	$-\bullet-$	---	---		

830		INCOME DATA	
ACTUAL RENT		$\begin{aligned} & \text { ECONOMIC } \\ & \text { RENT } \end{aligned}$	
vacancy	5\%	expenses	20\%
APARTMENT COMPUTATIONS			

14. Multiply the Base Value by the local modifier, and enter the resultant Replacement Cost New in the Gross Building summary section of the property record card, along with any descriptive information desired.

GROSS BUILDING SUMMARY													
ID	USE	CONST	GRADE	AGE EREC	AGE REM	SIZE	RATE	LM	RCN	COND.	\% GOOD	OB/MA	MARKET VALUE
	6-unit apt.	FR	C	71		6,400		. 933		G	80		
800	TOTAL OTHER IMPROVEMENTS												

SUMMARY OF VALUES	
TOTAL VALUE LAND	
TOTAL VALUE BUILDING	
TOTAL VALUE LAND \& BLDGS	

15. Enter the overall condition of the building. Enter E for excellent, G for good, A for average, F for fair, P for poor, and U for unsound.
16. Enter the percent good of the building being described. Percent good is defined as the resultant estimate of the diminishing value of an improvement after subtracting the amount of estimated depreciation from the replacement cost new.
17. Enter the obsolescence/market adjustment (08/MA) of the building. This is the resultant value after deduction of functional obsolescence and deduction or addition of a market adjustment factor expressed as a percentage.

Note: This is not a required entry. If this entry is utilized, it will function as a deduction or addition to the resultant value generated from the percent good entry.
18. Enter the replacement cost new less depreciation (RCNLD). This is the resultant value of the building after deduction of all forms of depreciation and/or the deduction or addition of a market adjustment factor.
19. Complete the gross building summary by adding to the main dwelling any additional minor buildings (improvements). Refer to the residential property record card listing instructions (side 3) for recommended procedure on the use of the gross building summary for listing and valuing additional improvements.
20. Then total the main dwelling and all additional (if any) improvements for a total improvement replacement cost new less depreciation value. This figure is entered in the (800) Total Other Improvements value space along with a brief general description of the item(s) being described in the Gross 8uilding Summary.

PERSONNEL DATA

Space is provided to enter the name or number and the date of the person measuring, listing, calculating, and reviewing the property data.

APARTMENT - Townhouse_ Grade A minus (-)

APARTMENT - Townhouse_ Grade B

APARTMENT - Townhouse_Grade B minus (-)

APARTMENT - Townhouse_ Grade C

APARTMENT - Townhouse_Grade C minus (-)

2 OR MORE UNITS

BASE PRICES PER SQUARE FOOT									
	FRAME OR CONC. BLOCK			AVERAGE UNIT SIZE	BRICK OR STONE			AVERAGE	Add for Air Cond. per Floor
AVERAGE UNIT SIZE	Finished Bsmt.	First Floor	$\begin{aligned} & \hline \text { Upper } \\ & \text { Floor } \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline \text { Finished } \\ \text { Bsmt. } \\ \hline \end{array}$	First Floor	$\begin{aligned} & \hline \text { Upper } \\ & \text { Floor } \\ & \hline \end{aligned}$		
300				300				300	
350				350				350	
400				400				400	
450				450				450	
500				500				500	
550				550				550	
600				600				600	
650				650				650	
700				700				700	
750				750				750	
800				800				800	
850				850				850	
900				900				900	
950				950				950	
1000				1000				1000	
1050				1050				1050	
1100				1100				1100	
1150				1150				1150	
1200				1200				1200	
1250				1250				1250	
1300				1300				1300	
1350				1350				1350	
1400				1400				1400	
1450				1450				1450	
1500				1500				1500	
1550				1550				1550	
1600				1600				1600	
1650				1650				1650	
1700				1700				1700	
1750				1750				1750	
1800				1800				1800	
1850				1850				1850	
1900				1900				1900	
1950				1950				1950	
2000				2000				2000	
Over				Over				Over	
Base Prices are for normal (C Grade) walk-up-type Apartment Buildings of wood joist construction. For fire-resistant construction, add 20%. For reinforced concrete fireproof construction, add 25%.									

BASE PRICE ADJUSTMENTS AND ADDITIONAL FEATURES						QUALITY GRADE FACTOR	
Base Prices for ground floor slab construction. Add per square foot of total basement				PLUMBING	Base Prices - include street services, five fixtures per unit, hot water system and normal drainage. Add or Deduct per Fixture	AA	1.75
UNFINISHED BASEMENT	AREA	$\begin{aligned} & \text { CRAWL } \\ & \text { SPACE } \end{aligned}$	BSMT.			A	1.55
	1,000					B	1.28
	1,500						
	2,000 3,000 4,000	3,000		ATTACHMENTS and OTHER FEATURES	Price from Residential Pricing Schedule.	C	1.00
	5,000						
	6,000			POOLS	Price from the appropriate Residential Pricing Schedule	D	0.85
	8,000						
	9,00010,000			OTHER BUILDING IMPROVEMENTS	Price from the appropriate Pricing Schedule.	E	0.55

OTHER BUILDING IMPROVEMENTS (O.B.I.) 5-3
Structure Type Codes 5-3
Quantity 5-3
Construction 5-4
Year 5-4
Size 5-4
Grade 5-4
Height (Hgt.) 5-4
Rate 5-4
Modification Codes 5-4
Special Modification Codes 5-4
Local Modifier 5-5
Replacement Cost New (RCN) 5-5
Condition (Cond.) 5-5
Percent (\%) Good 5-5
Obsolescence/Market Adjustment (OB/MA) 5-5
Replacement Cost New Less Depreciation (RCNLD) 5-5
AGRICULTURAL EXAMPLE 5-6
AGRICULTURAL STRUCTURE TYPE AND MODIFICATION CODES 5-7
THE AGRICULTURAL (MANUAL) WORK CARD 5-18
Building Name 5-18
Structure Type Codes 5-18
Construction 5-18
Year 5-18
Grade 5-18
Size 5-18
Cost Per Square Foot 5-18
Building Height 5-18
CostAdjustment For Heightz 5-19
Subtotal Cost. 5-19
Modification Codes 5-19
Sq. Ft./L. F./\$ (Square Feet/Lineal Feet/Dollar Amount) 5-19
Total Base Cost 5-19
Local Modifier 5-19
Replacement Cost New (RCN) 5-19
Condition 5-20
OB/MA or Obsolescence/Market Adjustment 5-20
RCNLD or Replacement Cost New Less Depreciation 5-20
WORK CARD EXAMPLE 5-20
TRANSFERRING DATA FROM THE WORK CARD TO THE PROPERTY RECORD CARD 5-25
DATA TABLES
Stables 5-27
High-Value (Estate) Stables 5-28
Arenas 5-29
S pecial-Purpose Dairy and Horse Barns 5-30
General-Purpose Bank Barns 5-31
General-Purpose Flat Barns 5-32
DATA TABLES (Continued)
Lean-Tos 5-33
Free-Stall Dairy/Beef Barns (Plastic Cloth Curtain Side Walls) 5-34
Milk Houses 5-35
Milk House Equipment 5-36
Milking Parlors 5-35
Milking P arlor Costs 5-36
Fully Automatic Systems 5-36
Manual Systems 5-36
Feeder Barns (Cattle Sheds) 5-37
Cattle Feed Bunks and Cattle Fence Bunks 5-38
Poultry Layer Houses 5-38
Poultry Broiler Houses 5-39
Turkey Barns 5-41
Hog Nursery, Farrowing, Breeding/Gestation and Finishing Barns 5-43
Hog Sheds 5-44
Nipple Automated Watering System for Hogs 5-44
S lurry Tanks 5-45
Bunker Silos 5-46
Farm Commodity Storage Sheds 5-47
Concrete Stave and Concrete Poured Silos 5-48
Porcelain Silos (Harvestore) 5-49
Steel Grain Bins 5-50
Grain Dryers 5-51
Loading/Unloading Systems 5-51
Aeration 5-51
Man Lifts 5-52
Truck Scales 5-52
Hopper Scales 5-52
Steel Tanks 5-52
Horizontal Drag (U-Trough) Conveyors 5-52
Flathouse Storage Buildings 5-53
45-Degree Hopper Bottom Tanks 5-54
Fiberglass Bottom Bulk Storage Tanks 5-55
Grain Elevators 5-56
Bucket Elevators 5-60
Pole-Frame Utility Buildings 5-61
Farm Implement (Equipment Shop) Buildings/F arm Implement Equipment Sheds 5-62
Arch-R ib (Quonset) Farm Utility Buildings 5-63
Arch-R ib (Quonset) Farm Implement Buildings 5-64
Arch-Rib (Quonset) Farm Implement Hoop Buildings 5-64
Frame Corn Cribs 5-65
Granaries and Wire Corn Cribs 5-66
Potato Storage Buildings and Tobacco Barns 5-67
Commercial Greenhouses 5-68
Farm Labor Housing - Dormitories 5-69
Transient Labor Cabins 5-69
Agricultural Yard Improvements 5-70
Tax Exempt Equipment 5-71
Note: The following items have been omitted in this edition as they are no longer being built or inuse:Prefabricated Steel BuildingsFeed Bunks, Circular TypeGalvanized Steel - Automated Nipple Watering System for Hogs
Prefabricated Steel Silos and Butler LMS Silos

This section deals with the Other Building Improvements (O.B.I.) portion of the Property Record Card (P.R.C.), Agriculture Structure Type \& Modification Codes, the Agricultural (Manual)Work Card (A.W.C.) and the various pricing tables applicable to the agricultural industry.

The chapters preceding this section are used in conjunction with the agricultural information supplied herein to properly complete the P.R.C. if listing and valuing agricultural property.

OTHER BUILDING IMPROVEMENTS (O.B.I.)

This section provides guidelines for collecting and recording additional structural characteristics affecting property value. Agricultural properties, i.e., barns, silos and the like may be priced (valued) in this area. However, another tool is available for the assessor in the form of an Agricultural (Manual) Work Card. This card is a combination of the existing Agricultural Work Card and the new headings listed in this section, now referred to as other Building Improvements. (A further discussion of the Agricultural Work Card will follow and is located at the front of the agricultural cost tables.) This Work Card allows more flexibility than the O.B.I. section we will now be discussing. Should you choose to utilize the Agricultural Work Card for listing and calculating, you may either bring your total values to the Gross Building Summary section (located below the O.B.I. area) or place your totals and other necessary information in the O.B.I. area in summary fashion. In either case, these summary values are then brought for ward to Page 2 and placed in the appropriate area under Dwelling Computations.

STRUCTURE TYPE CODES

This term refers to a category of improvements such as pools or barns. The structure type code, therefore, stands for the overall structure itself and is made up of three parts. The first character stands for the overall property component with which the structure is associated. There are three possible codes for this first character:

$$
\begin{aligned}
& \mathrm{R}=\text { Residential } \\
& \mathrm{A}=\text { Agricultural } \\
& \mathrm{B}=\text { Agricultural }
\end{aligned}
$$

The second character in the structure type code stands for the structural category of the improvement. There are many of these, and several examples are listed below.

$$
\begin{aligned}
& G=\text { Grain bin, G arage } \\
& S=\text { Shed, Silo } \\
& P=P \text { ool, P ole building }
\end{aligned}
$$

The third character is numeric and distinguishes one type of structure from the others within the same category. Several examples are listed below.

Structure Type Code	1st Character Meaning	2nd Character Meaning	3rd Character
RG1	Residential	Garage	Frame or CB
RG2	Residential	Garage	Brick or Stone
AM1	Agricultural	Milk House	Attached CB
AM2	Agricultural	Milk House	Attached Wood Frame
QUANTITY (QUAN)			

This term refers to the number or quantity of like structures being listed.

CONSTRUCTION

This term refers to the general construction of the item being listed. Circle the appropriate construction type.
$F=$ Frame/Concrete block construction
$M=$ Masonry/Brick/Stone construction
$P=$ Pole frame construction
$S=$ Steel frame construction
$O=$ Construction other than frame or masonry, for example: porcelain silo,
$\quad \begin{aligned} & \text { wire corn cribs, etc. }\end{aligned}$

YEAR

This term refers to the year the item was constructed. Enter all four digits.

SIZE

Enter either the ground floor area in square feet or the dimensions (width and length) of the item.

GRADE (G)

Space is provided to enter one alpha character denoting the quality grade of the item. If a quality grade denotation is not applicable to the item, draw a line through the character position.
Note: Refer to the cost schedule section of this manual for applicable grades.

HEIGHT (HGT.)

Space is provided to enter the actual height or depth of a structure whose type code will necessitate a deviation from the base specification prices.
For example: the base height specification for a Dairy Barn is 16 ft . If the subject Dairy Barn has a height of 16 ft ., simply leave the entry blank. If the subject Dairy Barn has a height of 20 ft ., it is necessary to enter the 20 in the height entry.

Note: For base height specifications, refer to the cost schedule section of this manual.

RATE

Space is provided to enter the pricing rate utilized from the cost schedules.

MODIFICATION CODES

Modification codes refer to additions or deductions to modify cost components from the base specifications. Modification codes are identified by one numeric character and should only be utilized for the specific structure(s) intended.

SPECIAL MODIFICATION CODES

Special modification codes refer to special modifications made to modify the cost components from the base specifications. Special modifications are identified by three character codes, as are the structure codes. The difference between using special modification codes and using structure type codes is that a special modification code necessitates a separate line entry immediately below the structure type code being modified. Other items necessary to describe the special modification must also be entered to allow for proper processing of the modification to an indication of value.

Note: Special modification codes should only be utilized for the specific structures intended.

LOCAL MODIFIER (LM)

Space is provided to enter the appropriate local modifier.

REPLACEMENT COST NEW (RCN)

Space is provided to enter the calculated replacement cost new of the item(s) after application of the localmodifier. Replacement cost new is defined as the current cost of replacing the improvement with a substitute improvement of equal utility.

CONDITION (COND.)

Space is provided to enter one alpha character denoting the overall condition of the item. Enter E for excellent, G for good, A for average, F for fair, P for poor and U for unsound.

PERCENT (\%) GOOD

Space is provided to enter the percent good of the improvement being described. Percent good is defined as the resultant estimate of the diminishing value of an improvement after subtracting the amount of estimated depreciation from the replacement cost new. For example: a structure which is estimated to be 45 percent depreciated as of a given time has a percent good of 55. Depreciation and percent good are complements of each other.

Note: F or further explanation, refer to the Percent Good Tables in this manual.

OBSOLESCENCE/MARKET ADJUSTMENT (OB/MA)

$O B / M A$ refers to the resultant value after deduction of functional obsolescence and deduction or addition of a market adjustment factor, expressed as a percentage. Allowable percentages range from $000 \%(0.00)$ to 200% (2.00).

Note: This is not a required entry. If this entry is utilized, itwill function as adeduction or addition to the resultant value generated from the percent good entry.

REPLACEMENT COST NEW LESS DEPRECIATION (RCNLD)

RCNLD refers to the resultant value of the improvement after deduction of all forms of depreciation and/or the deduction or addition of a market adjustment factor.

To further explain the concept of Other Building Improvements, the following examples are provided:

AGRICULTURAL

1. A masonry bank barn, $24^{\prime} \times 60^{\prime}$, with a height of 22^{\prime}, a gambrel roof and three water connections
2. A one-story metal poultry house, $24^{\prime} \times 60$ ', without insulation
3. A concrete stave silo with a roof, 14^{\prime} in diameter $\times 40^{\prime}$ high
4. A concrete stave silo without a roof, 14^{\prime} in diameter $\times 50$ high

OTHER BUILDING IMPROVEMENTS															
	$\begin{aligned} & \text { TYPE } \\ & \text { CODE } \end{aligned}$	QUAN	CONST.	YEAR	SIZE	G	HGT	RATE	MODIFI CATIONS	LM	RCN	COND	$\begin{gathered} \% \\ \text { GOOD } \end{gathered}$	OB/MA	R C N L D
701	AB1	01	F (M) P S o	1933	1440	C	22	54.85	2	. 980	77,404.32	P	20		15,480.86
702	FB1	03	F M P S O					436.13			1,308.39		20		261.68
703	AH5	01	F M P SO	1940	24×060			21.58	1	. 980	30,453.70	P	20		6,090.74
704	AS1	01	F M P SO	1961	24×040						19,306.37	G	60		11,583.82
705	AS2	01	F M P S 0	1961	24×050						21,820.98	P	40		8,728.39
706			F M P S O												
707			F M P S O												
708			F M P S O												
709			F M P S O												
710			F M P S O												

Breakdown of AB1: 1440 sq. ft. at $\$ 50.04$ (interpolation)

Breakdown of AH5 should be: 1440 sq . ft. at $\$ 23.96$ (interpolation) with adjustment for not having insulation

Modification:
4% height adjustment $(-2.00)=\$ 48.04$ $+\$ 6.81$ per sq. ft. for gambrel roof $=\underline{6.81}$

Total Adj. Rate $\$ 54.85$ 6.81
$\$ 54.85$ \$14.83
Modification Code 1 for insulation $-\$ 2.38 / \mathrm{sq}$. ft. $=-2.38$
Total Adj. Rate $=\$ 21.58$

Note: For the masonry bank barn, it is necessary to adjust the base rate downward 4% to account for the deviation of 2 feet from the standard 24 -foot height. The square foot price for the modification adjustment for a gambrel roof should then be added to reflect the actual base rate of the barn.

Note: For the special modification of three water connections, it is only necessary to enter the type code, quantity, rate, Replacement Cost New after application of the local modifier, percent good (same as the base structure type being described), and Replacement Cost New Less Depreciation.

Note: For the poultry house, it is necessary to adjust the base rate downward to reflect the modification adjustment because there is no insulation.

Note: For the silos, enter the Replacement Cost New after application of the local modifier in lieu of the rate.

AGRICULTURAL STRUCTURE TYPE AND MODIFICATION CODES

GENERAL-PURPOSE BANK BARNS			GENERAL-PURPOSE BANK BARNS	
STRUCTURE TYPE CODES		MODIFICATION CODES		
AB1-	Masonry DIM or SF	1.	Wood loft floor	SF
AB2-	Wood DIM or SF	2.	Gambrel/arch-type roof.	SF
AB3 -	Pole frame DIM or SF	3.	Stalls and partitions	SF
		4.	Earth floor	SF
		5.	No lighting	SF
			GENERAL-PURPOSE BANK BARNS	
			SPECIAL MODIFICATION CODES	
		FB1-	Water connection	QTY
		FB2-	Roof ventilators	QTY
		FB3-	Loose stanchion	QTY
		FB4 -	Stall only, w/out stanchion	QTY
GENERAL-PURPOSE FLAT BARNS		GENERAL-PURPOSE FLAT BARNS		
STRUCTURE TYPE CODES		MODIFICATION CODES		
AB4 -	Masonry DIM or SF	1.	Wood loft floor	SF
AB5 -	Wood frame/wood siding DIM or SF	2.	Gambrel/arch-type roof	SF
AB6 -	Pole frame/metal siding DIM or SF	3.	Stalls and partitions	SF
		4.	Earth floor	SF
		5.	No lighting	SF
			GENERAL-PURPOSE FLAT BARNS	
		SPECIAL MODIFICATION CODES		
		FB1-	Water connection	QTY
		FB2-	Roof ventilators	
	FREE-STALL DAIRY/BEEF BARNS	FREE-STALL DAIRY/BEEF BARNS (Cont'd.)		
	(Plastic Cloth Curtain Side Walls)	(Plastic Cloth Curtain Side Walls)		
	STRUCTURE TYPE CODES	MODIFICATION CODES		
AB7 -	Wood frame/wood siding DIM or SF	10.	8' high sidewall curtain	LF
AB8 -	Pole frame/metal siding DIM or SF	11.	10' high sidewall curtain	LF
AB9 -	Steel frame/metal siding DIM or SF	12.	Automatic curtain machine	QTY
AB10 -	- Steel arch-rib frame/wire panels DIM or SF	13.	Curtain drop safety system	QTY
	FREE-STALL DAIRY/BEEF BARNS	14.	J an Aire 8' high side curtain	LF
	(Plastic Cloth Curtain Side Walls)	15.	J an Aire 10' high side curtain	LF
	MODIFICATION CODES	16.	J an Aire 12' high side curtain ..	LF
1.	Concrete floor SF			
2.	Insulation, 112" SF		FREE-STALL DAIRY/BEEF BARNS	
3.	Insulation, polystyrene bd., 7/8" SF		(Plastic Cloth Curtain Side Walls)	
4.	Insulation, 4" SF		SPECIAL MODIFICATION CODES	
5.	Lighting SF	FB5 -	$14^{\prime} \times 12^{\prime}$ sliding door	QTY
6.	36 " box stir fan QTY	FB6-	$14^{\prime} \times 10^{\prime}$ sliding door	QTY
7.	48" box stir fan QTY	FB7-	$14^{\prime} \times 8{ }^{\prime}$ s sliding door	QTY
8.	3' high sidewall curtain LF	FB8 -	$16^{\prime} \times 7$ ' overhead door	QTY
9.	5' high sidewall curtain LF	FB9 -	9'x 7' overhead door	QTY

MILK HOUSES	MILK HOUSES		
STRUCTURE TYPE CODES		MODIFICATION CODES	
AM1 - Att., concrete block DIM or SF	1.	Metal roof	SF
AM2 - Att., wood frame/wood siding ... DIM or SF	2.	Wood shingle	SF
AM3 - Att., pole frame/metal siding DIM or SF	3.	Asphalt roof	SF
AM4 - Det., concrete block DIM or SF	4.	Heating	SF
AM5 - Det., wood frame/wood siding ... DIM or SF		MILK HOUSES	
AM6- Det., pole frame/metal siding ... DIM or SF		SPECIAL MODIFICATION CODE	
	FM2-	R oof ventilator	QTY
MILKING PARLORS		MILKING PARLORS	
STRUCTURE TYPE CODES	MODIFICATION CODES		
AM 7 - Att., concrete block DIM or SF	1.	Metal roof	SF
AM8 - Att., wood frame/wood siding ... DIM or SF	2.	Wood shingle	SF
AM9 - Att., pole frame/metal siding DIM or SF	3.	Asphalt roof	SF
AM10-Det., concrete block DIM or SF	4.	Heating	SF
AM11-Det., wood frame/ wood siding ... DIM or SF	5.	Parlor within a barn	SF
AM12-Det., pole frame/metal siding ... DIM or SF		MILKING PARLORS	
AM13 - Det., steel frame/ steel siding DIM or SF	SPECIAL MODIFICATION CODE		
	FM2-	R oof ventilator	QTY
COMMERCIAL GREENHOUSES	COMMERCIAL GREENHOUSES		
STRUCTURE TYPE CODES	STRUCTURE TYPE CODES		
Straight-Wall Structures	Hoop Structures		
AN1 - Steel and aluminum frame/glass DIM or SF AN6 - Pipe frame/polycarbonate or acrylic cover DIM or SF			
AN2 - Pipe frame/glass DIM or SF	AN7 -	Light pipe frame/arch frame/	
AN3 - Light pipe or wood frame/glass . . DIM or SF		fiberglass panels	DIM orSF
AN4 - Steel frame/plastic DIM or SF	AN8 -	Pipe or light tubular arch/	
AN5 - Light pipe or wood frame/plastic. DIM or SF		double polyethylene cover	DIM or SF
	AN9 -	Light pipe arch/wide spacing, polyethylene cover	DIM or SF
POTATO STORAGE BUILDINGS	POTATO STORAGE BUILDINGS		
STRUCTURE TYPE CODES	STRUCTURE TYPE CODES		
Below Ground	Above Ground		
AO1-Concrete block DIM or SF	AO4-	Concrete block/heaped earth	DIM or SF
AO2 - Wood frame/wood siding DIM or SF	AO5 -	Wood frame/wood siding	DIM or SF
Pole frame/metal siding DIM or SF	AO6 -	P ole frame/metal siding	DIM or SF
	A07 -	Steel frame/steel siding	DIM or SF
	POTATO STORAGE BUILDINGS		
	MODIFICATION CODE		
	1.	No insulation	SF
TOBACCO BARNS	TOBACCO BARNS		
STRUCTURE TYPE CODES	MODIFICATION CODES		
AO8 - Wood frame/wood siding DIM or SF	1.	No lighting	SF
A09 - Wood frame/vented walls DIM or SF	2.	Concrete floor	SF
A010-Pole frame/metal siding DIM or SF	3.	No water service	SF
AO11-Steel frame/steel siding DIM or SF	TOBACCO BARNS		
	SPECIAL MODIFICATION CODES		
	FO1-	24 " ventilating fan	
	FO2-	36 " ventilating fan	QTY

GRANARIES				GRANAR	
STRUCTURE TYPE CODES			MODIFICATION CODES		
AR 1 -	Wood frame/wood siding	DIM or SF	1.	Wood storage bins	
AR 2 -	Pole frame/metal siding	DIM or SF	2.	Wood ventilating ducts	
AR3-	Steel frame/steel siding	DIM or SF	3.	No lighting	
			4.	Pier foundation	
			5.	Second floor	
CONCRETE STAVE AND CONCRETE POURED SILOS			CONCRETE STAVE AND CONCRETE POURED SILOS		
STRUCTURE TYPE CODES			MODIFICATION CODES		
AS 1 - Concrete stave w/ roof DIA x HGT			Typical silo access piping		
AS 2 -	Concrete stave w/out roo	DIA \times HGT	17.	30' high	QTY
AS 5 -	Concrete poured w/ roof	DIA x HGT	18.	40' high	QTY
AS6-	Concrete poured w/out roor	DIA x HGT	19.	50' high	QTY
CONCRETE STAVE AND CONCRETE POURED SILO			20.	60' high	QTY
MODIFICATION CODES			21.	70' high	QTY
Silo unloaders (top)			22.	80' high	QTY
8.	10' diameter	QTY	23.	90' high	QTY
9.	12' diameter	QTY	24.	100' high	QTY
10.	14' diameter	QTY	Gunite interior finish		
11.	16' diameter ...	QTY	25.	16' diameter	QTY
12.	18' diameter ..	QTY	26.	20' diameter	QTY
13.	20' diameter	QTY	27.	24' diameter	
14.	22' diameter	QTY	28.	30' diameter .	QTY
15.	24' diameter	QTY	Epoxy interior finish		
16.	30' diameter	QTY	29.	16' diameter	
			30.	20' diameter	
			31.	24' diameter .	QTY
			32.	30' diameter.....	
PORCELAIN SILOS (HARVESTORE ${ }^{\text {m }}$)			PORCELAIN SILOS (HARVESTORE ${ }^{\text {m }}$)		
STRUCTURE TYPE CODES			MODIFICATION CODES		
AS 3 -	Price new	DIA \times HGT	1.	14' automatic unloader	
AS4-	Price pre-owned/rebuilt	DIA \times HGT	2.	17' automatic unloader	
			3.	20' automatic unloader	
			4.	25^{\prime} automatic unloader	
			5.	30^{\prime} automatic unloader	
			6.	14', 17', 20' sweep arm	QTY
			7.	14', 17', 20' sweep arm (new tube and screw)	
TRENCH SILOS					
STRUCTURE TYPE CODES					
AT1	Concrete panels w/ $3^{\prime \prime}$ concrete floor DEPTH x LF				
AT2 - Wood plank w/ 3" concrete floor .. DEPTH \times LF					
AT3 - Dirt, plastic lined, no flooring DEPTH \times LF					

	GRAIN ELEVATORS		GRAIN ELEVATORS	
	STRUCTURE TYPE CODES		SPECIAL MODIFICATION CODES	
AY 1 -	Wood crib/metal clad BU CAP		Machinery and equipment	
AY2-	Concrete (slip form construction) BU CAP	FY1	Low	BU CAP
	GRAIN ELEVATORS	FY2	Average	BU CAP
	MODIFICATION CODES	FY3	Good	BU CAP
1.	Attached covered elevator driveway . . SF	FY4	Excellent	BU CAP
2.	Detached annex silos without tunnel or conveyor gallery \qquad Running Ft .		GRAIN ELEVATORS MODIFICATION CODES	
3.	No intersticing BU CAP		Machinery and equipment	
4.	Concrete jump form construction BU CAP	1.	Steel bin storage over 100,000 bushels	Percent
5.	Single concrete silos, use annex costs Percent			
6.	Concrete stave silos Percent			
7.	Commercial installations Percent			
8.	Industrial bulk applications Percent			
	GRAIN DRYERS			
	STRUCTURE TYPE CODES			
AZ1 -	Batch type BU CAP			
AZ2 -	Continuous flow type BU CAP			
	STABLES		STABLES	
	STRUCTURE TYPE CODES		MODIFICATION CODES	
BA1 -	Wood frame/wood siding DIM or SF	1.	Concrete floor	SF
BA2 -	Pole frame/metal siding DIM or SF	2.	No lighting	SF
BA3 -	Steel frame/steel siding DIM or SF	3.	Stable ceiling	SF
			StABLES	
			SPECIAL MODIFICATION CODES	
		FJ 1 -	Stalls	QTY
		FJ 2 -	Horse walkers	QTY
		FJ 3 -	Portable pipe corrals	
		FJ 4 -	Portable pipe corral gate	QTY
		FJ 5 -	Corner-mount stall water	QTY
	HIGH-VALUE (ESTATE) STABLES			
	STRUCTURE TYPE CODES			
BA4 -	Concrete block/brick, stone or tile DIM or SF			
BA5 -	Wood frame/brick, stone or tile DIM or SF			
	ARENAS		ARENAS	
	STRUCTURE TYPE CODES		MODIFICATION CODES	
	w/ feed, tack and washrooms	1.	Concrete floor	SF
BC1-	Pole frame/metal siding DIM or SF	2.	No lighting	SF
BC2 -	Steel frame/steel siding \qquad DIM or SF Arena only	3.	Stable ceiling	SF
BC3 -	Pole frame/metal siding DIM or SF			
BC4 -	Steel frame/steel siding DIM or SF			

FARM COMMODITY STORAGE SHEDS			
STRUCTURE TYPE CODES			
BD1 - Concrete block..................... DIM or SF			
BD2 - Wood frame/wood siding DIM or SF			
BD3 - Pole frame/metal siding DIM or SF			
BD4 - Steel frame/steel siding DIM or SF			
FLATHOUSE STORAGE BUILDINGS	FLATHOUSE STORAGE BUILDINGS		
STRUCTURE TYPE CODES	MODIFICATION CODES		
BF1-Pole frame/metal siding DIM or SF	Eave height		
BF2-Steel frame/steel siding DIM or SF	1.	12 feet (x)	HGT
BF3- Steel slant-wall frame/	2.	14 feet (x)	HGT
heavy steel siding DIM or SF	3.	16 feet (x)	HGT
	4.	20 feet (x)	HGT
	5.	24 feet (x) .	HGT
FEEDER BARNS (CATTLE SHEDS)			
STRUCTURE TYPE CODES			
BG1 - Wood frame/wood siding DIM or SF			
BG 2 - Pole frame/metal siding DIM or SF			
BG3 - Steel frame/steel siding DIM or SF			
FARM IMPLEMENT (EQUIPMENT SHOP) BUILDINGS	FARM IMPLEMENT (EQUIPMENT SHOP) BUILDINGS		
STRUCTURE TYPE CODES	AND FARM IMPLEMENT EQUIPMENT SHEDS		
BH1 - Wood frame/wood siding DIM or SF	MODIFICATION CODES		
BH2 - Pole frame/metal siding DIM or SF	1.	Concrete floor .	SF
BH3- Steel frame/steel siding DIM or SF	2.	Insulation, 11/2"	SF
	3.	Insulation, polystyrene bd., 7/8"	SF
	4.	Insulation, 4"	SF
	5.	Wallboard	SF
	6.	Heating	SF
	7.	Wall partitions	SF
FARM IMPLEMENT EQUIPMENT SHEDS	FARM IMPLEMENT (EQUIPMENT SHOP) BUILDINGS		
STRUCTURE TYPE CODES	AND FARM IMPLEMENT EQUIPMENT SHEDS		
BH4 - Wood frame/wood siding DIM or SF	SPECIAL MODIFICATION CODES		
BH5 - Pole frame/metal siding DIM or SF	FP1-	$14^{\prime} \times 12^{\prime}$ sliding door	QTY
BH6- Steel frame/steel siding DIM or SF	FP2-	$14^{\prime} \times 10^{\prime}$ sliding door	QTY
	FP3-	$14^{\prime} \times 8$ ' sliding door	QTY
	FP4-	$16^{\prime} \times 7$ 7' overhead door	QTY
	FP5-	9"x 7 "overhead door	QTY
SLURRY TANKS		SLURRY TANKS	
STRUCTURE TYPE CODE		SPECIAL MODIFICATION CODES	
BK1 - Slurry tank........................ DIA x CHGT		Liquid manure tank	
SLURRY TANKS	FK1 -	Concrete rectangular tank	CUFT
MODIFICATION CODES	FK2 -	Concrete round tank	CUFT
1. Concrete slab, slurry tank CU FT	FK3 -	Concrete open pits	CUFT
2. Plank cover SF	FK4 -	Large clay lagoon	CUFT
3. No cover SF		Slotted floors	
4. Agitator and pumps QTY	FK5 -	Shallow pit/scrapper alley	
5. Lagoon flotation systems QTY	FK6 -	Deep pit/tractor access	SF

TRUCK SCALES		
STRUCTURE TYPE CODE		
BL1 - Truckscales QTY		
FARM LABOR HOUSING - DORMITORIES		FARM LABOR HOUSING - DORMITORIES
STRUCTURE TYPE CODES		MODIFICATION CODES
BM1 - Concrete block DIM or SF	1.	Insulation, 1½" SF
BM2 - Wood frame/wood siding DIM or SF	2.	Insulation, polystyrene bd., 7/8" SF
BM3 - Steel frame/steel siding DIM or SF	3.	Insulation, 4" SF
	4.	Wallboard.............................. . . SF
	5.	No electricity SF
	6.	Heating SF
	7.	Wall partitions SF
TRANSIENT LABOR CABINS	TRANSIENT LABOR CABINS	
STRUCTURE TYPE CODES	MODIFICATION CODES	
BM4 - Wood frame/wood siding DIM or SF	1.	Insulation, 1½" SF
	2.	Insulation, polystyrene bd., 7/8" SF
	3.	Insulation, 4" . SF
	4.	Wallboard SF
	5.	No electricity SF
	6.	Heating SF
	7.	Wall partitions SF

This is a data collection card to offer the local official the opportunity to list and summarize information on building values. This information summary is then posted on the manual data collection card. By using the work card, additional notes on the improvements can be added and used to substantiate and develop one's values.

THE LISTING SECTION OF THIS CARD IS SPELLED OUT BELOW.

BUILDING NAME

This field is used to identify the structure: barn, shed, silo, etc.

STRUCTURE TYPE CODES

This term refers to a category of improvements such as barns or sheds. This code is found in the identifying header information of the individual type of farm improvement. It is identified by two letters and a number such as AD1, AB1, etc.

CONSTRUCTION (Const.)

This term refers to the general construction of the item being listed. Circle the appropriate construction type.
$\mathrm{F}=\mathrm{Frame} /$ Concrete block construction
$M=$ Masonry/Brick/Stone construction
P = Pole frame construction
S = Steel frame construction
$0=$ Construction other than wood frame, masonry, pole frame or steel frame, for example: porcelain silo, wire corn cribs, etc.

YEAR (Yr.)
This term refers to the year the item was constructed. Enter all four digits.

GRADE (Gr.)

Space is provided to enter one alpha character denoting the quality grade of the item. If a quality grade denotation is not applicable to the item, draw a line through the character position. If the number is other than 1.00 , this number must be applied by multiplication to the Subtotal Base Cost column. (See that column description for additional instructions.)

SIZE

Enter either the ground floor area in square feet or the dimensions (width and length) of the item.

COST PER SQUARE FOOT

From the appropriate table, determine the proper square foot cost for that unit, and write that figure in the column.

BUILDING HEIGHT (Bldg. Hgt.)

Enter the actual height of building if it is different from the specifications in the manual. As you will note, all buildings listed are of a particular height. For example: The base height specification for a two-story Special-Purpose Dairy Barn is 16 '. If the subject Dairy Barn has a height of 16 ', simply leave the entry blank. If the subject Dairy Barn has a height of 20^{\prime}, it is necessary to enter the 20^{\prime} in the height space.

Note: For base height specifications, refer to the cost schedule section of this manual.

COST ADJUSTMENT FOR HEIGHT

If the subject building is of a height different from that specified as the standard, the price adjustment per square foot is to be placed here. Example: If a 2 -story Dairy Barn with a ground floor area of 3,000 square feet is 18 ' high, as opposed to 16 ', which is the standard, a price adjustment must be made.

The table at the right indicates that an AD1 masonry barn with a ground floor area of $3,000 \mathrm{sq}$. ft . is priced at $\$ 53.34$. At the bottom of the table a price adjustment of $\pm 2 \%$ per foot in height is indicated. An 18' barn would be 2' higher than the standard height of 16 ', so 2% for each of 2 feet would be 4% of $\$ 53.34$ or $\$ 2.13$. This amount, $\$ 2.13$ per square foot would be the amount entered in the Cost Adjustment for Height column.

SUBTOTAL COST

This column would be the total of the Cost Per Square Foot and the Cost Adj. for Height columns, times the square footage of the building column times the grade factor if this figure is not 1.00 .

MODIFICATION CODES

This refers to regular modification and special modification codes as listed in connectionwith the table best describing the subject building. Place the letter and number codes in this area.

BASE PRICES						
STRUCTURE TYPE	AD1	AD2	AD3	AD4	AD5	AD6
	Masonry	Wood	Pole Frame	Masonry	Wood	Pole Frame
Height	2-Story - 16" High			1-Story - 10" High		
Area	Price per Square Foot					
$\begin{aligned} & 1,200 \\ & 1,400 \\ & 1,600 \\ & 1,800 \end{aligned}$						
$\begin{aligned} & 2,000 \\ & 2,200 \\ & 2,400 \\ & 2,600 \\ & 2,800 \end{aligned}$						
$\begin{aligned} & 4,000 \\ & 4,500 \\ & 5,000 \\ & 5,500 \end{aligned}$						
$\begin{aligned} & 6,000 \\ & 6,500 \\ & 7,000 \\ & 7,500 \end{aligned}$						
8,000 8,500 9,000 10,000 Over						
$\pm 2 \% /$ Foot In Height						

SQ. FT./L.F./\$ (SQUARE FEET/LINEAL FEET/DOLLAR AMOUNT)

This is the column corresponding to modification codes. It indicates the dollar value to be applied to the number of square feet or lineal feet as listed.

Note: THERE MAY BE AS MANY ENTRIES AS NEEDED IN THE MODIFICATION CODE AND SQ. FT./L.F./\$ COLUMNS. THESE ENTRIES ARE THEN TOTALED IN THE SAME COLUMN.

TOTAL BASE COST

This is the total of the Subtotal Base Cost column and the Sq. Ft./L.F./\$ column.

LOCAL MODIFIER (LM)

Character positions are provided to enter numeric characters denoting the appropriate Local Modifier.

REPLACEMENT COST NEW (RCN)

Space is provided to enter the calculated replacement cost new of the item(s) after application of the local modifier. Replacement cost new is defined as the current cost of replacing the improvement with a substitute improvement of equal utility. ($\mathrm{RCN}=$ Total Base Cost Column x Local Modifier.

CONDITION (Cond.)

Space is provided to enter the overall condition of the item. Enter E for excellent, G for good, A for average, F for fair, P for poor, and U for unsound. Then see the CDU tables at the rear of this manual for the percentage to be applied against the RCN.

OB/MA or OBSOLESCENCE/MARKET ADJUSTMENT

This term refers to the resultant value after deduction of functional obsolescence and deduction or addition of a market adjustment factor expressed as a percentage. Allowable percentages range from 000\% (0.00) to 20\% (2.00).

Note: This is not a required entry. If this entry is utilized, it will function as a deduction or addition to the resultant value generated from the percent good entry.

RCNLD or REPLACEMENT COST NEW LESS DEPRECIATION

This term refers to the resultant value of the improvement after deduction of all forms of depreciation and/or the deduction or addition of a market adjustment factor.

WORK CARD EXAMPLE

List the following buildings on the next page:
A 2-story masonry special-purpose dairy barn (AD1) 18' high, 30' wide by 100 ' long. Grade of B with 200 lin. ft. of barn cleaner gutter, 200 lin. ft. of concrete feed bunks, and ceiling in the entire stable area. The barn is 20 years old and in good condition. The local modifier is .929. Calculate the RCNLD.

A pole frame building (AP 1) has a 46'span with a length of 100'. It was built in 1982 and is average in construction quality. It is 16 high and has a 14×12 slide door. It has a 90\% Market Adjustment (M.A.) as determined by the local assessor. The local modifier is .952. Calculate the RCNLD.

A concrete stave silo with roof (AS1). It is 16^{\prime} in diameter and 55' in height. It has an unloader and typical access piping. It was built in 1957 and is in average condition. The local modifier for this item is 1.00 . Calculate the RCNLD.

A concrete elevator (AY1) with a 78,500-bushel capacity. It has a workinghouse with a capacity of $22,000 \mathrm{BU}$. It was built in 1967 and is in good condition. The local modifier is .980. Calculate the RCNLD.

Information gathered on the agricultural (manual) work card may be summarized on the manual property record card in the gross building summary section. The headings are the same. This area may be totaled, and the total value carried to the gross building summary line of P age 2 of the same form.

BA1

BA2

BASE PRICES - 12' HIGH			
STRUC-	BA1	BA2	BA3
TURE TYPE	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price Per Square Foot		
1,200			
1,400			
1,300			
1,800			
2,000			
2,200			
2,400			
2,600			
2,800			
3,000			
3,200			
3,400			
3,600			
3,800			
4,000			
4,500			
5,000			
5,500			
6,000			
6,500			
7,000			
7,500			
8,000			
8,500			
9,000			
10,000			
Over			
$\pm 2 \%$ Foot in Height			

BASE SPECIFICATIONS: B
FOUNDATION - Concrete foundation and footings.
WALLS - Best siding or brick veneer; good metal panels on
pole frame or steel; finished inside and some trim.
FLOOR - Dirt; concrete in tack and feed rooms. ROOF -
Double pitch, asphalt shingles, metal on wood rafters and
framing, or metal on steel frame. OTHER FEATURES -
Some windows and ornamentation, T\&G finished stalls, fin-
ished tack and feed rooms, good quality throughout, good
lighting and water outlets, restrooms.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete foundation and footings.
WALLS - Wood, metal on pole frame or steel. FLOOR -
Dirt. ROOF - Double pitch, asphalt shingles, metal on wood
rafters and framing, or metal on steel frame. OTHER FEA-
TURES - Doors on stalls, wainscot in stalls, concrete floors
in tack and feed rooms, adequate lighting and water outlets.

BASE SPECIFICATIONS: D
FOUNDATION - Concrete foundation and footings.
WALLS - Wood on post and beam, metal on pole frame or
galvanized steel. FLOOR - Dirt. ROOF - Double pitch, as-
phalt shingles, metal on wood rafters and framing or metal
on steel frame. OTHER FEATURES - Rough finished
stalls, no lighting or water outlets.

QUALITY	GRADE FACTOR
B	1.42
C	1.00
D	0.72

BASE SPECIFICATIONS: B
FOUNDATION - Concrete foundation and footings.
WALLS - Concrete block or wood frame with fine wood sid
ing, face brick, stone trim, slate or tile; custom arches, cupo-
las and/or dormers. FLOOR - Concrete floors in lounge, of-
fice, restroom, tack, feed and horse bath areas. ROOF -
Gambrel, hip or double pitch with asphalt shingles, con-
crete or fiberglass tiles/shingles on wood rafters and fram-
ing or wood sheathing on steel frame. OTHER FEA-
TURES-Skylights, custom sash, fully insulated, custom
finished stalls; lounge, office, restrooms, shower and dres-
ing rooms; extensive fixtures and custom hardware
throughout, high-quality electrical and plumbing services.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete foundation and footings.
WALLS - Concrete block or wood frame with fine wood sid-
ing, face brick, stone trim, slate or tile. FLOOR - Concrete
floors in lounge, office, restroom, tack, feed and horsebath
areas. ROOF - Gambrel, hip or double pitch with asphalt
shingles, concrete or fiberglass tile/shingle on wood rafters
and framing or wood sheathing on steel frame. OTHER
FEATURES - Skylights, some custom sash, insulated,
good to fine finished stalls; lounge, office and restrooms;
quality finishes, shower and dressing room areas, high
quality and some special custom fixtures, high-quality elec-
trical and plumbing services.

BASE SPECIFICATIONS: D	$\mathbf{7 , 0 0 0}$		
FOUNDATION - Concrete foundation and footings. WALLS - Decorative block or wood frame with good wood siding or masonry veneer. FLOOR - Concrete floors in lounge, office, restroom, tack, feed and horsebath areas. ROOF - Hip or double pitch with asphalt shingles, concrete or fiberglass tiles/shingles on wood rafters and framing or wood sheathing on steel frame. OTHE R FEATURES - In- sulated, finished stalls, lounge, office, restrooms, shower and dressing room areas, good finishes, high-quality elec- trical and plumbing services.	$\mathbf{8 , 5 0 0}$	$\mathbf{8 , 5 0 0}$	$\mathbf{9 , 0 0 0}$

BC1

BASE SPECIFICATIONS: C w/ Feed, Tack and Washrooms

FOUNDATION - Concrete foundation and footings.
WALLS - Metal on pole frame or steel. FLOOR - Dirt arena floor; concrete in feed, tack and washrooms. ROOF Double pitch, metal on wood rafters and framing or metal on steel frame. OTHER FEATURES - Some interior finish, adequate lighting and water service.

BASE PRICES - 16' HIGH		
STRUCTURE TYPE	BC1	BC2
	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price Per Square Foot	
1,200		
1,400		
1,300		
1,800		
2,000		
2,200		
2,400		
2,600		
2,800		
3,000		
3,200		
3,400		
3,600		
3,800		
4,000		
4,500		
5,000		
5,500		
6,000		
6,500		
7,000		
7,500		
8,000		
9,500		
10,000		
$0 v e r$		

BC3

BASE SPECIFICATIONS: C Arena Only
FOUNDATION - Concrete foundation and footings.
WALLS - Metal on pole frame or steel. FLOOR - Dirt.
ROOF - Double pitch, metal on wood rafters and framing
or metal on steel frame. OTHER FEATURES - Minimum
electrical and water services.

BASE PRICES -16' HIGH		
STRUCTURE TYPE	BC3	BC4
	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price Per Square Foot	
1,200		
1,400		
1,300		
1,800		
2,000		
2,200		
2,400		
2,600		
2,800		
3,000		
3,200		
3,400		
3,600		
3,800		
4,000		
4,500		
5,000		
5,500		
6,000		
6,500		
7,000		
7,500		
8,000		
8,500		
10,000		

BASE PRICE ADJUSTMENTS		
CODE	MODIFICATION CODES	
$\mathbf{1}$	Concrete floor (-) per Sq. Ft. $\ldots \ldots \ldots \ldots \ldots \ldots$	
$\mathbf{2}$	No lighting (-), per Sq. Ft. $\ldots \ldots \ldots \ldots \ldots \ldots$	
$\mathbf{3}$	Stable ceiling (+) , per Sq. Ft.	

AD2

BASE PRICES						
STRUC-	AD1	AD2	AD3	AD4	AD5	AD6
TURE TYPE	Masonry	Wood	Pole Frame	Masonry	Wood	Pole Frame
Height	2-story - 16' High			1-story - 10' High		
Area	Price Per Square Foot					
1,200						
1,400						
1,300						
1,800						
2,000						
2,200						
2,400						
2,600						
2,800						
3,000						
3,200						
3,400						
3,600						
3,800						
4,000						
4,500						
5,000						
5,500						
6,000						
6,500						
7,000						
7,500						
8,000						
8,500						
9,000						
10,000						
Over						
$\pm 2 \%$ Foot in Height						

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Earth floor (-) per Sq. Ft..
2	No lighting (-) per Sq. Ft.
CODE	SPECIAL MODIFICATION CODES
FD1	Barn cleaner gutter (+), per Lin. Ft.
FD2	Concrete feed bunk (t), per Lin. Ft.
FD3	Wood feed bunk (+), per Lin. Ft.
FD4	Mechanical feeder, automatic (+), per Lin. Ft.
FD5	Mechanical feeder, manual (t), per Lin. Ft.
FD6	Stable ceiling (t), per Sq. Ft.

AD3

QUALITY	GRADE FACTOR
B	1.32
C	1.00
D	0.75

Note: For three-wall additions, see Lean-Tos, Page 5-33.

BASE SPECIFICATIONS: B
FOUNDATION - Concrete frost walls and footings. STABLE
WALLS - Brick orblock masonry, good wood siding on heavy
frame, or good metal siding on pole frame. LOFT WALLS -
Good wood siding on wood framing or good metal siding
on pole frame; wood sash windows. STABLE FLOOR -
Concrete. LOFT FLOOR - T\&G wood floors on heavy tim-
ber. ROOF - Gambrel or arch type, good asphalt shingles
on wood decking, rafters and framing. OTHER FEATURES
- Good fenestration, painted, wainscot, insulated, good st-
alls and dairy facilities, partitions, lighting and power wiring,
water service and drains.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete frostwalls and footings. STABLE
WALLS - Brick or block masonry, wood siding on wood
framing, or metal siding on pole frame. LOFT WALLS -
Good wood siding on wood framing, or metal siding on pole
frame; some windows. STABLE FLOOR - Partially con-
crete and dirt. LOFT FLOOR - Wood plank flooring with
adequate support. ROOF - Gambrel or arch type, asphalt
shingles on wood decking, rafters and framing. OTHER
FEATURES - Few partitions and stalls, feed room, ade-
quate lighting and electrical service, water outlets and
floor drains.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete frost walls and footings. STABLE WALLS - Block masonry, wood siding on light wood frame, or metal siding on pole frame. LOFT WALLS - Wood siding on light wood frame, or metal siding on pole frame; some windows. STABLE FLOOR - Dirt. LOFT FLOOR Light wood flooring with minimum support. ROOF - Gambrel or arch type, asphalt shingles on wood decking, rafters and framing. OTHER FEATURES - Few cheap stalls, no electrical or water service.

AB2

BASE PRICES - 2-STORY - 24' 'IGH			
STRUCTURE	AB1	AB2	AB3
TYPE	Masonry	Wood	Pole Frame
Area	Price Per Square Foot		
600			
800			
1,000			
1,200			
1,400			
1,600			
1,800			
2,000			
2,200			
2,400			
2,600			
2,800			
3,000			
3,400			
6,600			
4,000			
4,400			
4,800			
5,200			
5,600			
6,000			
7,000			
9,000			
10,000			
$0 v e r$			

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Wood loft floor (+) per Sq. Ft.
2	Gambrel/Arch-type roof (+) per Sq. Ft.
3	Stalls and partitions (t) per Sq. Ft.
4	Earth floor (-) per Sq. Ft.
5	No lighting (-) per Sq. Ft.
CODE	SPECIAL MODIFICATION CODES
FB1	Water connection (+), per Sq. Ft..
FB2	R oof ventilators (+), each
FB3	Loose stanchion (manual, no stall) (+), each. . . .
FB4	Stall only (without stanchion) (+), each.

AB3

QUALITY	GRADE FACTOR
B	
C	1.35
D	1.00

Note: For three-wall additions, see Lean-Tos, Page 5-33.

BASE SPECIFICATIONS: B
FOUNDATION - Concrete foundation and footings. WALLS -
Brick or block masonry, good wood siding on heavy frame, or
good metal siding on pole frame. FLOORS - First, concrete;
second, T\&G wood floors on heavy timber. ROOF - Gambrel
or arch type, good asphalt shingles on wood decking, rafters
and framing. OTHER FEATURES - Some wainscot, insulated,
adequate electrical and plumbing services.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete foundation and footings. WALLS -
Brick or block masonry, wood siding on wood frame, or metal
siding on pole frame. FLOORS - First, concrete; second, wood
plank flooring with adequate support. ROOF - Double pitched,
asphaltshingles on wood decking, rafters and framing. OTHER
FEATURES - Minimum electrical and plumbing services.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete foundation and footings. STABLE WALLS - Block masonry, wood siding on light wood frame, or metal siding on pole frame. LOFT WALLS - Wood siding on light wood frame, or metal siding on pole frame; some windows. STABLE FLOOR - Dirt. LOFT FLOOR - Light wood flooring with minimum support. ROOF - Double pitched, asphalt shingles on wood decking, rafters and framing. OTHER FEATURES - Few cheap stalls, no electrical or water service.

AB5

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Wood loft floor (+) per Sq. Ft.
2	Gambrel/Arch-type roof (t) per Sq. Ft.
3	Stalls and partitions (+) per Sq. Ft.
4	Earth floor (-) per Sq. Ft.
5	No lighting (-) per Sq. Ft.
CODE	SPECIAL MODIFICATION CODES
FB1	Water connection (+), per Sq. Ft.,
FB2	Roof ventilators (+), each

AB4

QUALITY	GRADE FACTOR
B	
C	1.35
D	1.00
	0.74

Note: For three-wall additions, see Lean-Tos, Page 5-33.

BASE SPECIFICATIONS: B

FOUNDATION - Concrete foundation and footings. WALLS Brick or block masonry, good wood siding on heavy frame, or good metal siding on pole frame. FLOORS - Concrete.
ROOF - Double pitched, good asphaltshingles on wood decking, rafters and framing. OTHER FEATURES - Adequate electrical and plumbing services.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete foundation and footings. WALLS -
Brick or block masonry, wood siding on wood frame, or metal
siding on pole frame. FLOORS - Some concrete. ROOF -
Double pitched, asphalt shingles on wood decking, rafters and
framing. OTHER FEATURES - Minimum electrical and plumb-
ing senvices.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete foundation and footings. WALLS Block masonry, wood siding on lightwood frame or metal siding on pole frame. FLOOR - Dirt. ROOF - Double pitched, asphalt shingles on wood decking, rafters and framing. OTHER FEATURES - No electrical or plumbing service.

AL1

BASE PRICES - 10" HIGH				
STRUCTURE TYPE	AL1	AL2	AL3	
	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	
Area	Price per Square Foot			
50				
100				
150				
200				
250				
300				
350				
400				
450				
500	$\pm 2 \%$ Foot in Height			

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Concrete floor (-) per Sq. Ft.
2	Insulation, $1^{1 / 2 \prime \prime}(+)$, per Sq. Ft. of wall area.
3	Insulation, polystyrene bd, 7/8" (+) per Sq. Ft. of wall area.
4	Insullation, 4" (t), per Sq. Ft. of wall area
5	Wallboard (+) per Sq. Ft. of wall area
6	No electricity (-), per Sq. Ft.
7	Heating (t), per Sq. Ft.
8	Wall partitions (t), per Sq. Ft.

AL3

QUALITY	GRADE FACTOR
B	1.65
C	1.00
D	0.61

BASE SPECIFICATIONS: B

FOUNDATION - Concrete footings. WALLS - Wood siding on wood frame, metal siding on pole frame or steel siding on steel frame. FLOOR - Some concrete. ROOF - Single pitch, asphalt shingles on wood decking, rafters and framing, metal on wood rafters and framing or steel on steel frame. OTHER FEATURES - Windows and side doors, partition walls, adequate lighting and water service.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete footings. WALLS - Wood siding
on wood frame, metal siding on pole frame or steel siding on
steel frame. FLOOR - Some concrete. ROOF - Single pitch,
asphalt shingles on wood decking, rafters and framing, metal
on wood rafters and framing or steel on steel frame. OTHER
FEATURES - Some partition walls, minimum lighting and wa-
ter service.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete footings. WALLS - Wood siding on wood frame, metal siding on pole frame or steel siding on steel frame. FLOOR - Dirt. ROOF - Single pitch, asphalt shingles on wood decking, rafters and framing; metal on wood rafters and framing; or steel on steel frame. OTHER FEATURES - Unfinished interior, no lighting or water service.

AB9

BASE PRICES - 12' HIGH				
STRUC-	AB7	AB8	AB9	AB10
TURE	Wood Frame/ TYPE Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Metal Siding	*Steel Arch-Rib Frame/ Wire Panels
Area	Price per Square Foot			
2,500				
5,000				
7,500				
10,000				
12,500				
15,000				
17,500				
20,000				
25,000				
30,000				
35,000				
40,000				
50,000				
60,000				
70,000				
80,000				
90,000				
100,000				
110,000				
120,000				
130,000				
150,000				

QUALITY	GRADE FACTOR
B	1.36
C	1.00
D	0.74

AB8

BASE SPECIFICATIONS: B
FOUNDATION - Concrete foundation and footings. WALLS -
Good-quality wood siding on wood frame, good-quality metal
on pole frame or steel frame; end walls - fully sheeted, side
walls; high-quality plastic cloth curtain. FLOOR - Concrete al-
leys and curbs. ROOF - Double pitched, good-quality asphalt
shingles or good-quality metal roofing on wood rafters and
framing, metal roofing on steel framing. OTHER FEATURES -
* ood stalls, good electrical and plumbing services. Note: Barns
are naturally ventilated.

BASE SPECIFICATIONS: C

FOUNDATION - Concrete foundation and footings. WALLS Wood siding on wood frame, metal on pole frame, or steel frame; end walls - fully sheeted, side walls; plastic cloth curtain. FLOOR - Concrete alleys and curbs, dirt. ROOF - Double pitched, asphalt shingles or metal roofing on wood rafters and framing, metal roofing on steel framing. OTHER FEATURES Good stalls, good electrical and plumbing services. Note: Barns are naturally ventilated.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete foundation and footings. WALLS Wood frame, pole frame or steel frame; end walls and side walls; plastic cloth curtain. FLOOR - Concrete alleys and curbs, dirt. ROOF - Double pitched, asphalt shingles or metal roofing on wood rafters and framing, metal roofing on steel framing. OTHER FEATURES - Average-quality stalls, adequate electrical and plumbing services. Note: Barns are naturally ventilated.

*BASE SPECIFICATIONS - 14' HIGH
Steel Arch-Rib Frame/Wire Panels

Note: For three-wall additions, see Lean-Tos, P age 5-33.

BASE PRICE ADJUSTMENTS			
CODE	MODIFICATION CODES	CODE	MODIFICATION CODES
1	Concrete floor (-) per Sq. Ft.	12	Automatic curtain machine, travel length (+), each
2	Insulation, $1^{1 / 2 \prime 2}(+)$, per Sq. Ft..		25.5", ; 37.5", ; 49.5", ;73.5",
3	Insulation, polystyrene bd., 7/8" (+), per Sq. Ft.	13	Curtain drop safety system (+), each.
4	Insulation, $4^{\prime \prime}(+)$, per Sq. Ft..		J an Aire side curtains - automatic
5	Lighting (+), per Sq. Ft.	14	$8{ }^{\prime}$ high (+), per Lin. Ft..
6	36 " box stir fan, post mounted (+), each	15	10' high (+), per Lin. Ft..
7	$48 "$ box stir fan, post mounted (+), each. Sidewall Curtains - Cost/Linear Foot	16	12' high (+), per Lin. Ft..
		CODE	SPECIAL MODIFICATION CODES
	Height Curtain Curtain w/Suspension	FB5	14×12 slide door, each.
8	3	FB6	14×10 slide door, each.
9	5	FB7	14×8 slide door, each.
10	8	FB8	16×7 overhead, each.
11	10	FB9	9×7 overhead, each.

MILK HOUSES

AM 3

BASE SPECIFICATIONS

FOUNDATION - Concrete foundation and footings. WALLS - Concrete block, wood siding on wood frame or metal on pole frame. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal on wood decking and framing. OTHER FEATURES - Plaster or finished wainscot, adequate electrical and plumbing services.

BASE PRICES - 8' CIGH						
STRUCTURE TYPE	AM1	AM2	AM3	AM4	AM5	AM6
	Concrete Block	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Concrete Block	Wood Frame/ Wood Siding	Pole Framel Metal Siding
	Attached		Detached			
Area	Price Per Square Foot					
$\begin{aligned} & 200 \\ & 400 \\ & 60 \end{aligned}$						
$\begin{array}{r} 800 \\ 1,000 \\ 1,200 \end{array}$						
$\pm 2 \%$ Foot in Height						

MILKING PARLORS

AM 7

AM10

AM 12

BASE SPECIFICATIONS
FOUNDATION - Concrete foundation and footings. WALLS - Concrete block, wood siding on wood frame or metal on pole frame; windows or shutters. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal on wood decking and framing. OTHER FEATURES - Plaster or gypsum wainscot, cooler and washroom, adequate electrical and plumbing services, pipe stanchions.

BASE PRICES - 8' HIGH							
STRUCTURE TYPE	AM7	AM8	AM9	AM10	AM11	AM12	AM13
	Concrete Block	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Concrete Block	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
	Attached			Detached			
Area	Price Per Square Foot						
200							
400600							
800							
$\begin{aligned} & 1,000 \\ & 1,200 \end{aligned}$							
1,400							
1,600							
			$\pm 2 \%$ Foot	eight			

Note: Costs for Specialized Steel Buildings, formerly found on Page 6-27, have been omitted from this edition. This type of building is no longer in use.

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Metal roof, per Sq. Ft.
2	Wood shingle, per Sq. Ft.
3	Asphalt roof, per Sq. Ft.
4	Heating, per Sq. Ft..
5	Parlor within a barn, multiply detached square footage price by.
CODE	SPECIAL MODIFICATION CODES
FM2	R oof ventilators (+), each.

The following is a breakdown cost list of some of the equipment that is typically found in a milk house.

Milk bulk tanks, per gallon, refrigerated
Not refrigerated

Compressors, each
Plate coolers, floor mounted, each....
Chillers, each
Water heaters, gas, each
Automatic wash systems, each

MILKING PARLOR COSTS

Accurate prices are difficult to obtain and present for a number of reasons: 1) The parlor systems vary greatly in scope and quality; 2) the parlor setups require raised platforms, which are usually concrete with sand fill, but vary as to size, design, complexity of arrangement, etc., so it becomes virtually impossible to price these components in realistic terms; 3) the price indicators below are, as nearly as can be determined, thatportion which can reasonably be assumed to be assessable as opposed to exempt milk house equipment; 4) personal judgment and caution must be exercised by the assessor in viewing these costs as a point of beginning only. They are general in nature and offer a point at which to start individual research conceming the parlor components and their attributable value to the parlor as a whole. The assessor must then analyze the result of this effort in relation to the current law (70.111 (14)) to ascertain the true assessability of the various components.

FULLY AUTOMATIC SYSTEMS

The stalls are full sized with automatic feeders, hydraulic crowd gates with electric-eye openers, automatic udder washers, prep stalls, piping, vacuum pump equipment and typical electrical hookups. (Costs do not include bulk tank, wash sinks, compressors, water heater, softeners, etc., which, as typical milk house equipment, would be exempt) Typical parlors of this type and quality are priced as follows:

Double 6 or double 8, per stall
Double 10, per stall
Double 12, per stall
Double 16 or double 20, per stall

MANUAL SYSTEMS

This would apply to all smaller operations and would mosttypically include four stalls. The feeders would be manual, with no automatic udder washers or hydraulic gates; however, the stall would be of similar design and/or quality. The system would include piping, vacuum pump equipment and typical electrical hookup. The price for the manual system is in the range of $\$ 3931.76$ to $\$ 5395.97$ per stall.

Milking parlor partial cost breakdown list.

Walk-thru stalls, base price per stall
P arallel stalls, base price per stall
Herringbone stalls, base price per stall
Rotary stall system, fully automatic, 40 to 60 cows, complete system
Feed systems, each
Computerized automation
Power gates

BG2

BG 2

BG3
BASE SPECIFICATIONS Open One Side
FOUNDATION - Concrete foundation and footings. WALLS - Wood on wood frame, metal on pole frame or metal on steel frame. FLOOR - Dirt. ROOF - Double pitched, asphalt shingles or metal on wood rafters and frame or steel frame. OTHER FEATURES - Rub boards, feeders and water troughs.

BASE PRICES -12" HIGH			
	BG1	BG2	BG3
TYPE	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
$\begin{aligned} & 200 \\ & 300 \\ & 400 \end{aligned}$			
$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$			
$\begin{array}{r} 800 \\ 900 \\ 1,000 \end{array}$			
$\begin{aligned} & 1,200 \\ & 1,400 \\ & 1,600 \end{aligned}$			
$\begin{aligned} & 1,800 \\ & 2,000 \\ & 2,200 \end{aligned}$			
$\begin{aligned} & 2,400 \\ & 2,600 \\ & 2,800 \end{aligned}$			
$\begin{aligned} & 3,000 \\ & 3,200 \\ & 3,400 \end{aligned}$			
$\begin{aligned} & \hline 3,600 \\ & 3,800 \\ & 4,000 \end{aligned}$			
		Height	

AF 1

AF4

BASE PRICES					
STRUCTURE TYPE	AF1	AF2	AF3	AF4	
	Concrete Feed Bunk	Post-and-Plank Feed Bunk	Concrete Fence Bunk	Post-and-Plank Fence Bunk	

BASE PRICE ADJUSTMENTS		BASE PRICE ADJUSTMENTS (Continued)	
CODE	SPECIAL MODIFICATION CODES	CODE	SPECIAL MODIFICATION CODES -
FF1	R oof, 10' wide (+), per Lin. Ft.		ADD FOR STOCK WATERER
FF2	Mechanical feeder, automatic (+), per Lin. Ft.. . . .	FF5	Cattle, (+), each
FF3	Mechanical feeder, manual (+), per Lin. Ft.	FF6	Hog or sheep, (+), each
FF4	Concrete apron, 10' wide (+), per Lin. Ft.	FF7	Combination cattle and hog, (+), each

Note: Costs for Feed Bunks, circular type, formerly found on Page 6-29, have been omitted in this edition, as they are no longer being built.

AH 1

AH4

BASE SPECIFICATIONS

FOUNDATION - Concrete foundation and footings. WALLS - Wood on wood frame, metal on pole frame or metal on steel frame. FLOOR - Dirt. ROOF - Double pitched, asphalt shingles or metal on wood rafters and frame or steel frame. OTHER FEATURES - Rub boards, feeders and water troughs.

BASE PRICES PER SQUARE FOOT OF GROUND AREA						
	AH1	AH2	AH3	AH4	AH5	AH6
TYPE	Concrete Block	Concrete Block	Pole Frame/ Metal Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	Steel Frame/ Steel Siding
Height	One-story	Two-story	One-story	Two-story	One-story	Two-story
Area	Price per Square Foot					
200						
400						
600						
800						
1,000						
1,200						
1,400						
1,600						
1,800						
2,000						
2,400						
2,800						
3,200						
3,600						
4,000						
5,000						
6,000						
7,000						
8,000						
9,000						
10,000						
Over						

Note: For Base Price Adjustments, see Page 5-40.

BASE PRICE ADJUSTMENTS		
CODE	MODIFICATION CODES	$\begin{gathered} \text { Per } \\ \text { Sq. Ft. } \end{gathered}$
1	Insulation, first floor (-)	
2	Insulation, second floor (-)	
3	Interior partitions (excluding cages) (-)	
4	Earth floor (-)	
5	Clay floor (-)	
6	Heating (+)	
	POULTRY LAYER A-FRAME EQUIPMENT SYSTEMS Costs Calculated at 0.48 Square Foot per Bird	$\begin{gathered} \text { COST } \\ \text { PER BIRD } \end{gathered}$
7	A-frame layer cages with chain feeding system	
8	Auger feeder bin and fill system (bulk feed bin which delivers feed to the feeders through an auger fill system)	
9	Nipple watering system	
10	Egg collection system (transports eggs from layer house to egg packing building.	
11	House fan system (fans, shutters, and other miscellaneous equipment)	
12	Evaporative cooling pad system (does not include framing materials or plumbing equipment from water source to the cooling system)	
13	Sidewall curtain and air inlet system	
	POULTRY LAYER BATTERY CAGE EQUIPMENT SYSTEMS Costs Calculated at 0.48 Square Foot per Bird	$\begin{gathered} \text { COST } \\ \text { PER BIRD } \end{gathered}$
14	Battery layer cages with feeding system (cages with manure removal belts under every tier and direct-drive chain feeding systems)	
15	Auger feeder bin and fill system (bulk feed bin which delivers feed to the feeders through an auger fill system)	
16	Nipple watering system	
17	Egg collection system (transports eggs from layer house to egg packing building)	
18	Manure removal system (belt conveyor system located in the rear of the building transports the manure to a secondary conveyor, which transports the manure to the outside of the building)	
19	House fan system (fans, shutters and other miscellaneous equipment)	
20	Evaporative cooling pad system (does not include framing materials or plumbing equipment from water source to the cooling system)	
21	Sidewall curtain and air inlet system	

CODE	SPECIAL MODIFICATION CODE
FH1	Water connection (-), per Sq. Ft.

AH8

AH9

BASE SPECIFICATIONS

FOUNDATION - Concrete foundation and footing. WALLS - Minimum block, metal on pole frame or steel on steel. Top half of sidewalls, mesh screen; bottom half of sidewalls, shutters. FLOOR - Dirt. ROOF - Double pitch, metal on wood or steel on wood. OTHER FEATURES - Natural ventilation only, insulated, some partitions, electrical lighting and water service.

BASE PRICES PER SQUARE FOOT OF GROUND AREA			
	AH7	AH8	AH9
TYPE	Concrete Block	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
$\begin{aligned} & \hline 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$			
$\begin{aligned} & \hline 1,000 \\ & 1,200 \\ & 1,400 \\ & 1,600 \\ & 1,800 \\ & \hline \end{aligned}$			
$\begin{aligned} & \hline 2,000 \\ & 2,400 \\ & 2,800 \\ & 3,200 \\ & 3,600 \end{aligned}$			
$\begin{aligned} & \hline 4,000 \\ & 5,000 \\ & 6,000 \\ & 7,000 \\ & \hline \end{aligned}$			
$\begin{array}{r} 8,000 \\ 9,000 \\ 10,000 \\ \text { Over } \end{array}$			

BASE PRICE ADJUSTMENTS		
CODE	MODIFICATION CODES	
2	Clay floor (+), per Sq. Ft. Concrete floor (+), per Sq. Ft.	
	POULTRY BROILER EQUIPMENT SYSTEMS Costs Calculated at 0.80 Square Foot per Bird	$\begin{gathered} \text { COST } \\ \text { PER BIRD } \end{gathered}$
3	Pan feeder system	
4	Auger feeder bin and fill system (bulk feed bin which delivers feed to the feeders through an auger fill system).	
5	Nipple watering system	
6	Heating system (infrared brooders with wall heaters operating on propane gas)	
7	House fan system (fans, shutters and other miscellaneous equipment)	
8	Evaporative cooling pad system (does not include framing materials or plumbing equipment from water source to the cooling system)	
9	Sidewall curtain and air inlet system .	

BASE SPECIFICATIONS
FOUNDATION - Concrete foundation and footing. WALLS - Metal on pole frame or steel on steel. SIDE WALLS -Top half of side-
walls mesh screen; bottom half of sidewalls shutters. FLOOR - Partial concrete floor. ROOF - Double pitched, metal on wood
or steel framing. OTHER FEATURES - Natural ventilation only, some partitions, electrical lighting and water service.

BASE PRICES - 8' HIGH		
STRUCTURE TYPE	AH10	AH11
	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
	Price per Square Foot	
200		
400		
600		
800		
1,000		
1,200		
1,400		
1,600		
2,800		
± 000		
$\pm 2 \% /$ Foot in Height		

BASE PRICES - 8' HIGH		
STRUCTURE TYPE	AH10	AH11
	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
	Price per Square Foot	
2,800		
3,200		
3,600		
4,000		
5,000		
6,000		
7,000		
8,000		
9,000		
Over		
$\pm 2 \% /$ Foot in Height		

BASE PRICE ADJUSTMENTS		
CODE	MODIFICATION CODES	
1	Concrete floor (+), per Sq. Ft.	
	TURKEY FINISHING BARN EQUIPMENT SYSTEMS Costs Calculated at 3 Square Feet per Bird	$\begin{gathered} \text { COST } \\ \text { PER BIRD } \end{gathered}$
2	Pan feeder systems with direct drives	
3	Auger feeder bin and fill system (bulk feed bin which delivers feed to the feeders through an auger fill system).	
4	Nipple watering system .	
5	Heating system (infrared brooders with wall heaters operating on propane gas)	
6	House fan system (fans, shutters and other miscellaneous equipment)	
7	Evaporative cooling pad system (does not include framing materials or plumbing equipment from water source to the cooling system).	
8	Sidewall curtain and air inlet system	

AV5 or AV8

AV8 or AV11

AV3 or AV6

AV5 or AV8

BASE SPECIFICATIONS Nursery	BASE SPECIFICATIONS Farrowing	BASE SPECIFICATIONS Breeding/Gestation	BASE SPECIFICATIONS Finishing
FOUNDATION - Concrete foundation and footings. WALLS - Wood, metal on pole frame or steel on steel frame. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing or metal roofing on steel rafters and framing. OTHER FEATURES - Good ventilation and fenestration, fully insulated, interior sheathing, subdivided, office, electric lighting, plumbing and lab.	FOUNDATION - Concrete foundation and footings. WALLS - Wood, metal on pole frame or steel on steel frame. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing or metal roofing on steel rafters and framing. OTHER FEATURES - Good ventilation and fenestration, fully insulated, interior sheathing, subdivided, electric lighting and plumbing.	FOUNDATION - Concrete foundation and footings. WALLS - Wood, metal on pole frame or steel on steel frame. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing or metal roofing on steel rafters and framing. OTHER FEATURES - Insulated, plywood interior, some subdivision, electric lighting and plumbing.	FOUNDATION - Concrete foundation and footings. WALLS - Wood, metal on pole frame or steel on steel frame. FLOOR - Partial concrete. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing or metal roofing on steel rafters and framing. OTHER FEATURES - Some wainscot, some division of space, electric lighting and plumbing.

BASE PRICES - PER SQUARE FOOT - 8" HIGH												
	Nursery			Farrowing			Breeding/Gestation			Finishing		
	AV1	AV2	AV3	AV4	AV5	AV6	AV7	AV8	AV9	AV10	AV11	AV12
STRUCTURE TYPE	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Framel Steel Siding
Area	Price per Square Foot											
200 300 400 500 700 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Over												
$\pm 2 \% /$ Foot in Height												

[^0]	BASE SPECIFICATIONS Wood, Pole Frame and Steel
FOUNDATION - Concrete foundation and footings. WALLS - Open front, wood, metal on pole frame or steel on steel frame. FLOOR - Concrete. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing or metal roofing on steel rafters and framing. OTHER FEATURES - Some wainscot, back vents, some subdivision of space, water service.	\quad
:---	
Arch-Rib	

BASE PRICES - PER SQUARE FOOT - 8' HIGH				
	AV13	AV14	AV15	AV16
STRUCTURE	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	*Arch-Rib/ Fabric Cover	Steel Frame/ Steel Siding
Area	Price per Square Foot			
200 300 400 500 700 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Over				
$\pm 2 \% /$ Foot in Height				

CODE	MODIFICATION CODES
$\mathbf{1}$	Flush pit $(+) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
$\mathbf{2}$	Shallow pit $(+)$, per Sq. Ft. of area $\ldots \ldots$
$\mathbf{3}$	Deep pit $(+) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

AUTOMATED NIPPLE WATERING SYSTEM FOR HOGS

BASE SPECIFICATIONS
Heated nipple drinker, constructed of 1/4-inch-thick PVC outer casing and stainless steel cap. Stainless steel nipples, fully insulated, heating element, all plumbing and electrical equipment. Cost per pen

HOG BARN ADJUSTMENTS

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Flush pit (+)
2	Shallow pit (+), per Sq. Ft. of area
3	Deep pit (+)
	Slotted floors
4	Nursery (+), per Sq. Ft.
5	Farrowing (+ , , per Sq. Ft.
6	Finishing (+), per Sq. Ft.
7	Farrowing crate, finger (+), each
8	F arrowing crate, riser (+), each
9	Gestation stall (+), each
	Confinement partitions (+), per linear foot
10	PVC: 20" high, \$6.01; 30" high, \$8.47; 38" high, \$12.47
11	Solid rod: 27" high, \$7.86; 32" high, \$10.95; 42" high, \$14.10
12	Galvanized panel: 35" high, \$2.57; 42" high, \$2.94

BK1

BASE PRICES		
BK1		
Diameter	Height	Price
25^{\prime}	14^{\prime}	
25^{\prime}	23^{\prime}	
42^{\prime}	14^{\prime}	
42^{\prime}	23^{\prime}	
62^{\prime}	14^{\prime}	
62^{\prime}	23^{\prime}	
81^{\prime}	14^{\prime}	
81^{\prime}	19^{\prime}	
81^{\prime}	23^{\prime}	
101^{\prime}	14^{\prime}	
101^{\prime}	19^{\prime}	
101^{\prime}	23^{\prime}	

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Concrete slab, slurry tanks, (+), per Cu. Ft. of concrete
2	Plank cover, (-), per Sq. Ft. of Top
3	No cover, (-), per Sq. Ft. of Top
4	Agitator and pumps, (+), Each
5	Lagoon flotation systems, (+), E ach
CODE	SPECIAL MODIFICATION CODES
	LIQUID MANURE TANKS
FK1	Concrete rectangular tank (+), per Cu. Ft.
FK2	Concrete round tank (+), per Cu. Ft. ...
FK3	Concrete open pits (+), per Cu. Ft.
FK4	Large clay lagoons (+), per Cu. Ft.
	SLOTTED FLOORS
FK5	Shallow pit/scraper alley (+), per Sq. Ft. of pit area
FK6	Deep pit/tractor access (+), per Sq. Ft. of pit area

AK1

BASE SPECIFICATIONS
Concrete base with plank sides or post-and-plank construction.

AK1

BASE SPECIFICATIONS
Concrete panels or treated plank sidewalls with open ends.
Usually above ground with a concrete floor on grade.

BASE PRICES		
STRUCTURE TYPE	AK1	AK2
	*Concrete Panels w/ 3", Concrete Floor	Wood Plank w/ 3"" Concrete Floor
Wall Height, Ft.	Price per Lin. Ft. - 30' Wide	
$\mathbf{8}^{\prime}$		
10^{\prime}		
12^{\prime}		
16^{\prime}		
20^{\prime}		
25^{\prime}		

BASE PRICE UNIT COSTS	
3" concrete floor, per Square Foot	8.5 ft . high end panel, per Lineal F oot
$4 "$ concrete floor, per Square Foot	10 ft . high end panel, per Lineal Foot
$5 "$ concrete floor, per Square Foot	12 ft . high end panel, per Lineal Foot
$6 "$ concrete floor, per Square Foot	16 ft . high end panel, per Lineal Foot
3" asphalt floor, per Square Foot	8.5 ft . high divider panel, per Lineal F oot
4 " asphalt floor, per Square Foot	12 ft high divider panel, per Lineal F oot
5" asphalt floor, per Square Foot	16 ft . high divider panel, per Lineal F oot
6 " asphalt floor, per Square Foot	Note: Divider panels are free standing.

BASE PRICE UNIT COST EXAMPLES

Trench Refinements

Specifications: Concrete panels w/ 5" concrete floor, 16' deep

Specifications: Concrete panels w/ 3" asphalt floor, 16' deep

| $\$ \quad\left(3^{\prime \prime}\right.$ floor $)-\$$ | (3"floor, base) | $=\$-$ | /Sq. Ft. (deduction) |
| :--- | :--- | :--- | :--- | :--- |
| $30^{\prime}($ width $) \times \$$ | | $=\$$ | /Lin.Ft. |
| $\$ \quad($ base $)-\$$ | | $=\$$ | /Lin.Ft. |

Bunker Build-up Cost

Specifications: Concrete panels w/ 3" concrete floor, 12' high

$\$ \quad$ (divider panel) $\times 2$	$=\$$	/Lin. Ft.	
$30^{\prime}($ width $) \times \$ \quad\left(3^{\prime \prime}\right.$ conc. floor, base)	$=\$$	/Lin. Ft.	
$\$ \quad+\$$		$=\$$	/Lin. Ft.

BD3

BD4

BASE SPECIFICATIONS Open One Side
FOUNDATION - Concrete foundation and footings. WALLS - Concrete block with masonry bay separation walls; plywood, siding or metal on pole frame or metal on steel frame; concrete and upper frame bay walls. FLOOR - Concrete. ROOF - Single pitch, rolled asphalt composition or metal on wood rafters and frame or steel frame.

BASE PRICES				
	BD1	BD2	BD3	BD3
TYPE	Concrete Block	Wood Frame/ Wood Siding	Pole Frame Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot			
$\begin{array}{r} 800 \\ 1,000 \\ 1,200 \end{array}$				
$\begin{aligned} & 1,400 \\ & 1,600 \\ & 1,800 \end{aligned}$				
$\begin{aligned} & 2,000 \\ & 2,200 \\ & 2,400 \end{aligned}$				
$\begin{aligned} & 2,600 \\ & 2,800 \\ & 3,000 \end{aligned}$				
$\begin{aligned} & 3,200 \\ & 3,400 \\ & 3,600 \end{aligned}$				
$\begin{aligned} & 3,800 \\ & 4,000 \end{aligned}$				
$\pm 2 \% /$ Foot in Height				

BASE PRICES					
STRUCTURE TYPE		AS1	AS2	AS5	AS6
		Concrete Stave		Concrete Poured	
		w/ Roof	w/out Roof	w/ Roof	w/out Roof
Dia.	Height	Price			
10'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \end{aligned}$				
12'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 60^{\prime} \end{aligned}$				
14'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 60^{\prime} \\ & 70^{\prime} \end{aligned}$				
16'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 60^{\prime} \\ & 70^{\prime} \\ & 80^{\prime} \end{aligned}$				
18'	30^{\prime} 40^{\prime} 50^{\prime} 60^{\prime} 70^{\prime} 80^{\prime} 90^{\prime}				
20'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 60^{\prime} \\ & 70^{\prime} \\ & 80^{\prime} \\ & 90^{\prime} \end{aligned}$				
22'	$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \\ & 50^{\prime} \\ & 60^{\prime} \\ & 70^{\prime} \\ & 80^{\prime} \\ & 90^{\prime} \\ & \hline \end{aligned}$				
24'	$\begin{aligned} & 50^{\prime} \\ & 60^{\prime} \\ & 70^{\prime} \\ & 80^{\prime} \\ & 90^{\prime} \end{aligned}$				
30'	$\begin{array}{r} 60^{\prime} \\ 70^{\prime} \\ 80^{\prime} \\ 90^{\prime} \\ 100^{\prime} \\ 110^{\prime} \\ 120^{\prime} \\ 130^{\prime} \\ \hline \end{array}$				
Price includes foundation and erection on site					

	BASE PRICE ADJUSTMENTS
CODE	MODIFICATION CODES
	Silo Unloaders (Top)
8	10' diamerter(+)
9	12' diamerter(t)
10	14' diamerter(+)
11	16' diamerter(+)
12	18' diamerter(+)
13	20' diamerter(+)
14	20' diamerter(+)
15	24' diamerter(t)
16	30^{\prime} diamerter(+)
	Costs include motor, auger and tripod, but exclude any electrical work such as hookup.
	Typical Silo Access Piping
17	30^{\prime} high silo (+).
18	40' high silo (+).
19	50 ' high silo (+).
20	60' high silo (+).
21	70' high silo (t).
22	80' high silo (+).
23	90' high silo (+).
24	100' high silo (+)
	Gunite interior finish
25	16^{\prime} diameter, per vertical foot (+) . . .
26	20' diameter, per vertical foot (+)
27	24^{\prime} diameter, per vertical foot (t)
28	30' diameter, per vertical foot (+)
	Epoxy interior finish
29	16' diameter, per vertical foot (+)
30	20^{\prime} diameter, per vertical foot (+)
31	24' diameter, per vertical foot (+)
32	30' diameter, per vertical foot (t)

Note: The International Silo Association recommends that the maximum height for a silo not be more than 3.5 to 4 times its diameter.

AS4

BASE PRICES				
STRUCTURE TYPE		AS3	AS4	
Model	Dia.	Height	Price New	Price Pre-owned/ Rebuilt
	14^{\prime}	23^{\prime}		
34B'	14^{\prime}	32^{\prime}		
	14^{\prime}	41^{\prime}		
	17^{\prime}	31^{\prime}		
	17^{\prime}	40^{\prime}		
	17^{\prime}	49^{\prime}		
	20^{\prime}	28^{\prime}		
	20^{\prime}	32^{\prime}		
12B, 13B,	20^{\prime}	33^{\prime}		
14B, 40B'	20^{\prime}			
INCLUSIVE	20^{\prime}	41^{\prime}		
	20^{\prime}	43^{\prime}		
	20^{\prime}	50^{\prime}		
20^{\prime}				

BASE PRICES				
STRUCTURE TYPE			AS3	AS4
Model	Dia.	Height	Price New	Price Pre-owned/ Rebuilt
$\begin{aligned} & \text { 12B, 13B, } \\ & \text { 14B, 40B' } \\ & \text { INCLUSIVE } \end{aligned}$	$\begin{aligned} & 20^{\prime} \\ & 20^{\prime} \\ & 20^{\prime} \end{aligned}$	$\begin{aligned} & 68^{\prime} \\ & 77^{\prime} \\ & 87^{\prime} \end{aligned}$		
$\begin{aligned} & \text { 16B, 17B, } \\ & \text { 18B, 42B' } \\ & \text { INCLUSIVE } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25^{\prime} \\ & 25 \\ & 25^{\prime} \\ & 25^{\prime} \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 34^{\prime} \\ & 42^{\prime} \\ & 43^{\prime} \\ & 51^{\prime} \\ & 60^{\prime} \\ & 69^{\prime} \\ & 79^{\prime} \\ & 88^{\prime} \end{aligned}$		
20B	$\begin{aligned} & 31^{\prime} \\ & 31^{\prime} \\ & 31^{\prime} \end{aligned}$	$\begin{aligned} & 70^{\prime} \\ & 80^{\prime} \\ & 89^{\prime} \end{aligned}$		
Price includes foundation and erection				

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	14' automatic unloader (+)
2	17' automatic unloader (+)
3	20' automatic unloader (+)
4	25^{\prime} automatic unloader (+).
5	31' automatic unloader (+).
6	14', 17', 20' sweep-arm auger (used) (+)
7	14', 17', 20' sweep-arm auger (new tube and screw) (+)

Note: Costs for Prefabricated Steel Silos and Butler LMS Silos, formerly found on the next page, have been omitted in this edition, as they are no longer being built.

BASE SPECIFICATIONS				
Tank and installation only.				
BASE PRICES				
STRUCTURE TYPE			AG1	AG2
Diam.	Height	Bushel Capacity	$\begin{gathered} \hline \text { Without } \\ \text { Drying Bin } \end{gathered}$	With Drying Bin
15'	$\begin{gathered} 7^{\prime}-4^{\prime \prime} \\ 11^{\prime}-0^{\prime \prime} \\ 14^{\prime}-8^{\prime \prime} \\ 18^{\prime}-4^{\prime \prime} \end{gathered}$	$\begin{aligned} & 1,257 \\ & 1,792 \\ & 2,329 \\ & 2,864 \end{aligned}$		
18'	$\begin{aligned} & 11^{\prime}-0^{\prime \prime} \\ & 14^{\prime}-8^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime \prime}-"^{\prime \prime} \\ & 25^{\prime \prime}-"^{\prime \prime} \\ & 33^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-4^{\prime \prime}-0^{\prime \prime} \end{aligned}$	$\begin{array}{r} 2,647 \\ 3,422 \\ 4,198 \\ 4,973 \\ 5,748 \\ 7,299 \\ 8,849 \\ 10,400 \end{array}$		
21'	$\begin{aligned} & 11^{\prime}-00^{\prime \prime} \\ & 14^{\prime}-8^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime}-0^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 33^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-4^{\prime \prime}-{ }^{\prime \prime} \end{aligned}$	$\begin{array}{r} \hline 3,693 \\ 4,753 \\ 5,813 \\ 6,874 \\ 7,934 \\ 10,055 \\ 12,175 \\ 14,296 \end{array}$		
24'	$\begin{aligned} & 11^{\prime}-0^{\prime \prime \prime} \\ & 14^{\prime}-8^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime \prime}-0^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 33^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-4^{\prime \prime}-8^{\prime \prime} \end{aligned}$	$\begin{array}{r} 4,949 \\ 6,344 \\ 7,739 \\ 9,134 \\ 10,528 \\ 13,318 \\ 16,107 \\ 18,897 \end{array}$		
27'	$\begin{aligned} & 11^{\prime}-00^{\prime \prime} \\ & 14^{\prime}-8^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime}-0^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 33^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-4^{\prime \prime}-0^{\prime \prime} \end{aligned}$	6,409 8,182 9,955 11,728 13,500 17,046 20,591 24,137		
30'	$\begin{aligned} & 14^{\prime}-8^{\prime \prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime}-0^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 33^{\prime \prime}-0^{\prime \prime} \\ & 40^{\prime}-4^{\prime \prime} \\ & 47^{\prime}-{ }^{\prime \prime} \end{aligned}$	10,278 12,473 14,668 16,863 21,252 25,624 30,031		
36'	$\begin{aligned} & 14^{\prime}-88^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime}-0^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 33^{\prime \prime}-"^{\prime \prime} \\ & 40^{\prime}-4{ }^{\prime \prime} \\ & 47^{\prime}-8{ }^{\prime \prime}-{ }^{\prime \prime} \end{aligned}$	$\begin{aligned} & 15,297 \\ & 18,473 \\ & 21,648 \\ & 24,823 \\ & 31,174 \\ & 37,524 \\ & 43,875 \\ & 53,400 \end{aligned}$		
42'	$\begin{aligned} & 14^{\prime}-8^{\prime \prime} \\ & 18^{\prime}-4^{\prime \prime} \\ & 22^{\prime \prime}-"^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 21,416 \\ & 25,738 \\ & 30,060 \\ & 34,382 \end{aligned}$		

BASE PRICES				
STRUCTURE TYPE			AG1 (Cont'd.)	AG2 (Cont'd.)
Diam.	Height	Bushel Capacity	Without Drying Bin	$\begin{gathered} \text { With } \\ \text { Drying Bin } \end{gathered}$
$\begin{gathered} \text { 42' } \\ \text { (Cont'd.) } \end{gathered}$	$\begin{aligned} & 33^{\prime}-0^{\prime \prime} \\ & 40^{\prime \prime}-"^{\prime \prime} \\ & 47^{\prime \prime}-8 \\ & 58^{\prime}-8{ }^{\prime \prime} \end{aligned}$	$\begin{aligned} & 43,026 \\ & 51,670 \\ & 60,314 \\ & 73,279 \end{aligned}$		
48'		$\begin{aligned} & 28,749 \\ & 34,394 \\ & 40,039 \\ & 45,684 \\ & 56,974 \\ & 68,264 \\ & 79,554 \\ & 96,488 \end{aligned}$		
60'	$\begin{aligned} & 18^{\prime}-4^{\prime \prime} \\ & 25^{\prime}-8^{\prime \prime} \\ & 40^{\prime \prime}-4 \\ & 47^{\prime \prime}-8 \\ & 58^{\prime \prime}-"^{\prime \prime} \\ & 64^{\prime}-0 \end{aligned}$	56,170 73,810 109,092 126,732 152,870 165,536		
75'	$\begin{aligned} & 32^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-0^{\prime \prime} \\ & 48^{\prime}-0^{\prime \prime} \\ & 58^{\prime}-8^{\prime \prime} \\ & 64^{\prime}-0^{\prime \prime} \end{aligned}$	$\begin{aligned} & 147,000 \\ & 176,000 \\ & 206,000 \\ & 246,000 \\ & 266,000 \end{aligned}$		
90'	$\begin{aligned} & 32^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-0^{\prime \prime} \\ & 48^{\prime}-0^{\prime \prime} \\ & 58^{\prime}-8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 221,000 \\ & 263,000 \\ & 305,000 \\ & 358,223 \end{aligned}$		
105'	$\begin{aligned} & 32^{\prime}-0^{\prime \prime} \\ & 40^{\prime}-0^{\prime \prime} \\ & 48^{\prime}-0^{\prime \prime \prime} \\ & 58^{\prime}-8^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 306,180 \\ & 363,558 \\ & 420,936 \\ & 500,000 \end{aligned}$		
NOTE:	Drying bins should never have eave heights greater than $18^{\prime} 4$ " or diameters greater than 48^{\prime}.			

BASE PRICE ADJUSTMENTS						
CODE	MODIFICATION CODES					
1	Ladder, (+),					
2	Safety cage, (+), per Lin. Ft.					
3	Grain spreaders, (t), each					
4	Stirrators, (+), per foot of diameter					
CODE	SPECIAL MODIFICATION CODES					
	Costs includes 5 " slab	Base Cost	4" Slab, (-)	6" Slab, (+)	8" Slab, (+)	10" Slab, (+)
FS1	15' diameter, (+)					
FS2	18' diameter, (+)					
FS3	21' diameter, (+)					
FS4	24' diameter, (+)					
FS5	27' diameter, (+)					
FS6	30' diameter, (+)					
FS7	36' diameter, (+)					
FS8	42' diameter, (+)					
FS9	48' diameter, (+)					
FS10	60' diameter, (+)					
FS 11	75' diameter, (+)					
FS12	90' diameter, (+)					
FS13	105' diameter, (+)					

GRAIN DRYERS			
AZ1		AZ2	
Batch Type		Continuous-flow Type	
Dry/Cool, 25\% to 15\%			
Capacity	Price	Capacity	Price
150		250	
200		375	
270		500	
390		625	
		750	
		1,000	
		1,250	
		1,500	
		1,875	
		2,000	
		2,500	
		3,000	
		3,125	
		3,750	
		4,000	

LOADING - UNLOADING SYSTEMS			
AX1		AX2	
Auger-type Conveyors		Belt-type Conveyors	
Diam.	Price/ Lin. Ft.	Width	Price/ Lin. Ft.
6 "		12"	
8 "		18"	
10"		24"	
12"		$30^{\prime \prime}$	
14"		36 "	
16"		48"	

AERATION
FG1
Aeration systems, $(+)$, per bushel $\ldots \ldots \ldots \ldots \ldots$

STEEL GRAIN BINS (Continued)

	MAN LIFTS
	Al1
	Uncoded, electrically operated personal lifts. Per stop over two, (+) .

TRUCK SCALES	
BL1	
Capacity	Price
20-ton.	
30-ton	
40-ton	
50-ton	
60-ton	
70-ton	
100-ton	

STEEL TANKS	
AG3	
BUSHEL CAPACITY	PRICE PER BUSHEL
500,000	
600,000	
700,000	
800,000	
900,000	
$1,000,000$	
Prices do not include loading system or other features.	

CONVERSION SYSTEMS
1 cubic foot $=.8036$ bushels
1 bushel $=1.24446$ cubic foot
1 gallon $=0.1337$ cubic foot $=0.1074$ bushel

HOPPER SCALES	
AE1	
Capacity	Price
25-ton.	
36-ton ...	
75-ton	
100-ton ..	

HORIZONTAL DRAG (U-TROUGH) CONVEYORS

BASE PRICES					
STANDARD BOTTOM DISCHARGE					
AW3					
Type	Drive and Tail Section		U-Trough Complete w/ Chain and Paddles	Bypass Inlet	
Diameter	Length	Price	Price per Linear Foot	Length	Price
6"	28"			13"	
9"	32"			18"	
12"	40"			21"	
14"	46"			24"	
16"	52"			27"	
18"	58"			30"	
20"	64"			-----	
24"	75"			37"	

Price Explanation

When calculating the cost of a drag conveyor, first determine the overall length. Then take the overall length minus head and tail length (of the selected drag) and bypass inlet if needed. This number represents the length of the trough needed. Next multiply that number by the price per foot for the trough. (Prices do not include the drive.)

Price Example

Specifications: $\quad 9^{\prime \prime}$ conveyor, 60^{\prime} overall w/bypass inlet, 3000 bu., 5-HP drive w/ guard, less motor. $60^{\prime}\left(720^{\prime \prime}\right)-32^{\prime \prime}($ head and tail section $)-18^{\prime \prime}($ bypass inlet $)=670^{\prime \prime}=55^{\prime} 10^{\prime \prime}$

Head and tail section
Bypass inlet
U-trough
Total Cost

BASE SPECIFICATIONS

FOUNDATION - Concrete foundation and footings. WALLS - Metal on pole frame, heavy steel panels on steel frame. FLOOR Concrete. ROOF - Metal on wood truss framing or steel truss framing. OTHER FEATURES - Bulkheads, adequate electrical service.

BASE PRICES - 10' HIGH			
	BF1	BF2	BF3
TYPE	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding	Steel Slant-Wall Framel Heavy Steel Siding
Area Price per Square Foot			
2,500			
5,000			
7,500			
10,000			
12,500			
15,000			
17,500			
20,000			
25,000			
30,000			
	Prices do n	stems and/or o	

BASE SPECIFICATIONS	
Tank and installation only.	

AE2				
Base Diameter	Eave Height	Bushel Capacity	Tonnage Capacity	Price
7'	$\begin{array}{ll} 10^{\prime} & 9^{\prime \prime} \\ 13^{\prime} & 5 \prime \prime \\ 16^{\prime} & 1^{\prime \prime} \\ 18^{\prime} & 9 \prime \prime \end{array}$	$\begin{aligned} & 157 \\ & 239 \\ & 321 \\ & 403 \end{aligned}$	$\begin{array}{r} \hline 4.71 \\ 7.17 \\ 9.63 \\ 12.09 \end{array}$	
9'	$\begin{aligned} & 17^{\prime} \\ & 19^{\prime \prime} \\ & 8^{\prime \prime} \\ & 22^{\prime} \\ & 4^{\prime \prime} \\ & 24^{\prime} 11^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 458 \\ & 594 \\ & 730 \\ & 866 \end{aligned}$	$\begin{aligned} & 13.74 \\ & 17.82 \\ & 21.90 \\ & 25.98 \end{aligned}$	
12'	20^{\prime} $0 "$ 25 $0 "$ 31 $0 "$	$\begin{array}{r} 870 \\ 1,345 \\ 1,825 \end{array}$	$\begin{aligned} & \hline 26.10 \\ & 40.35 \\ & 54.75 \end{aligned}$	
	32' 7"	4,030	120.90	

AE2

AE 2

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	3" concrete slab, (+) per Sq. Ft.
2	4 " concrete slab, (+) per Sq. Ft.
3	5" concrete slab, (+) per Sq. Ft.
4	6" concrete slab, (+) per Sq. Ft.
	Piling: Concrete in drilled holes
5	12" diameter, (+), per Lin. Ft.
6	16" diameter, (+), per Lin. Ft.
7	24 " diameter, (+), per Lin. Ft.
8	36" diameter, (+), per Lin. Ft.
9	48" diameter, (+), per Lin. Ft.

AE3

Tank, tank assembly, ladder and cage.	BASE SPECIFICATIONS

AE3						
DIAMETER	OVERALL HEIGHT	CAPACITY, CU. FT.	CAPACITY, BUSHELS	CAPACITY, TONS	PRICE	
$\mathbf{6}$	$10^{\prime} 6^{\prime \prime}$	130	104	3.12		
$\mathbf{7}$	$12^{\prime \prime} 6^{\prime \prime}$	228	183	5.49		
$\mathbf{8}$	$15^{\prime} 6^{\prime \prime}$	400	321	9.63		
$\mathbf{8}$	$20^{\prime} 6^{\prime \prime}$	525	422	12.66		
$\mathbf{1 0}$	19^{\prime}	550	442	13.26		
$\mathbf{1 0}$	21^{\prime}	700	563	16.89		
$\mathbf{1 0}$	23^{\prime}	850	683	20.49		
$\mathbf{1 0}$	25^{\prime}	1,000	804	24.12		
$\mathbf{1 0}$	27^{\prime}	1,150	924	27.72		
$\mathbf{1 0}$	29^{\prime}	1,300	1,045	31.35		
$\mathbf{1 0}$	31^{\prime}	1,450	1,165	34.95		
$\mathbf{1 0}$	33^{\prime}	1,600	1,286	38.58		
$\mathbf{1 0}$	35^{\prime}	1,750	1,406	42.18		
$\mathbf{1 0}$	$\mathbf{3 7}$	1,900	1,527	45.81		
$\mathbf{1 0}$	39^{\prime}	2,050	1,647	49.41		

BASE PRICE ADJUSTMENTS			
CODE	MODIFICATION CODES	CODE	MODIFICATION CODES
			Piling, concrete, in drilled holes
1	3' concrete slab (+), per Sq. Ft.	5	12" diameter (+), per Lin. Ft.
2	4' concrete slab (+), per Sq. Ft.	6	$16^{\prime \prime}$ diameter (+), per Lin. Ft.
3	5^{\prime} concrete slab (+), per Sq. Ft.	7	24" diameter (+), per Lin. Ft.
4	6^{\prime} concrete slab (+), per Sq. Ft.	8	36 " diameter (+), per Lin. Ft.
		9	48 " diameter (+), per Lin. Ft.

Grain elevators are built for the processing and storage of grain. There are three principal types of construction: poured concrete, laminated wood and fabricated steel. Structural requirements will vary, not only due to size, but also due to the type of grain handled. Grain elevator facilities are divided into several categories consisting of storage tanks built in groups, usually of concrete or steel, in large elevators, and wood in smaller units, a headhouse for handling and cleaning the grain, and conveyors for transporting the grain. The replacement cost tables provided in this section are based upon the specifications of size, design and type of construction and are to be used as a guide for estimating the replacement cost of grain elevators and their auxiliary buildings.

Most facilities may consist of a combination of structures as listed below or in other categories in this section. Any separate offices, warehouses or other nonfarm structures should be priced separately.

Costs are based on total licensed bushel capacity of the elevator and/or annex facility except for steel tanks and bins, which are priced on a cost-per-tank basis. Special foundation work such as pilings or extremely large concrete pads are not included and must be added separately.

Elevator costs will include the complete headhouse (working house), tunnel, conveyor gallery and storage tanks or bins commensurate with the type and size of facilities listed.

Annex costs are for vertical storage facilities. They are to be used for elevators when there is an exposed leg system and no headhouse or for additional detached storage which utilizes the headhouse of the original elevator as well as its basic machinery. If the annex has a headhouse, it should be priced from the elevator cost tables, using the total capacity of both the elevator and the annex.

BASE SPECIFICATIONS

STORAGE TANKS:

Concrete -

Wood -

Steel -

Structures used to store grain.
Reinforced concrete, slip-form construction. Tanks vary from 40 to 130 feet in height and 20 to 40 feet in diameter. Wall thickness varies from 4 to 10 inches depending upon design. The circular bins rest directly on a concrete slab, which, in turn, is carried by exterior walls and interior columns resting on a thick concrete mat.

Wood cribbing usually 2 " x 6 " lumber on outer walls and 2 " x 4 " lumber on partitions, all set in heavy concrete foundations. The outside walls may be covered with sheet metal, asbestos or wood sheathing. Small capacity, usually under 200,000 bushels.

Bolted welded steel construction with a concrete floor and a heavy concrete foundation. Small capacity, usually under 200,000 bushels.

BASE SPECIFICATIONS (Continued)

HEADHOUSES: Structures containing the machinery necessary for cleaning, weighing, and separating the grain; may contain some additional small-capacity storage tanks.

Concrete - Reinforced concrete structural frame with concrete curtain walls and steel sash lights.

Wood - Wood frame with corrugated iron, asbestos, or wood sheathed siding resting on a concrete foundation; steel sash lights.

Steel - Structural steel with corrugated steel or asbestos siding and steel sash lights.

DEPRECIATION

Grain elevators are subject to the same depreciating forces as any other type of structure. Physical deterioration, as well as functional and economic obsolescence, apply the greatest depreciating factors. Obsolescence, both functional and economic, can be caused by changes in the local grain industry, availability of transportation and the overall economy of the area. It is advisable to base the economic and functional depreciation upon the previous year's annual usage, and the physical depreciation upon the actual condition of the structure.

BASE PRICES				
$\underset{\text { TYPE }}{\substack{\text { STRUCTURE }}}$			AY2	
	Wood Crib/Metal Clad		Concrete (Slip Form Construction)	
	Elevator	Annex	Elevator	Annex
Total Bushel Capacity	Price per Bushel			
8,000				
10,000				
15,000				
20,000				
30,000				
40,000				
50,000				
75,000				
100,000				
200,000				
500,000				
750,000				
1,000,000				
$\begin{gathered} 2,000,000 \\ \text { OVER } 2,000,000 \end{gathered}$				

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Attached covered elevator driveway (+), per Sq. Ft.
2	Detached annex silos without tunnel or conveyor gallery (-), per running foot of silo
3	No intersticing (-), per bushel
4	Concrete jump form construction (-), per bushel
5	Single concrete silos, use annex costs (+), percent
6	Concrete stave silos (-), percent
7	Commercial installations (+), percent
8	Industrial bulk applications (+), percent .

Machinery and equipment costs are very variable, depending on the exact job the elevator performs. The lower end of the range represents storage only, and the higher end of the range includes processing equipment. Costs of the various types of equipment overlap to some degree.

When pricing new equipment having greater flow capacity, a higher cost rank should be used than when pricing older elevators utilizing original equipment. The higher rank costs include newer, computerized terminal facilities.

All costs should be applied to total licensed capacity of both the elevator and the annexes it serves.

SPECIAL MODIFICATION CODES				
CODE	FY1	FY2	FY3	FY4
	Low	Average	Good	Excellent
Total Bushel Capacity	Price per Bushel			
8,000				
10,000				
15,000				
20,000				
30,000				
50,000				
75,000				
100,000				
50000000				
750,000				
$2,000,000$				
OVER 2,000,000				

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
$\mathbf{1}$	For steel bin storage over 100,000 bushels, deduct 20\% from the low-cost range for each additional 100,000 bushels.

SPECIFICATIONS OF "TYPICAL" COUNTRY ELEVATORS DESIGNED BY BORTON, INCORPORATED

4 TANK

5½ TANK

6 TANK

8½ TANK

SPECIFICATIONS	TYPE									
	4 TANK	51⁄2 TANK			6 TANK			81⁄2 TANK		
BUSHEL CAPACITY	100,000	150,000	200,000	250,000	150,000	200,000	250,000	200,000	250,000	300,000
Dimension A	$15^{\prime \prime}{ }^{\prime \prime}$	16'0"	18'0"	20'0"	$15^{\prime \prime}{ }^{\prime \prime}$	18'0"	20'0"	$16^{\prime \prime}{ }^{\prime \prime}$	18'0"	20'0"
Dimension B	$39^{\prime \prime}{ }^{\prime \prime}$	50'0"	56'0"	62'0"	39'0"	45'0"	49'0"	50'0"	$56^{\prime \prime}{ }^{\prime \prime}$	62'2"
Dimension C	$45^{\prime \prime} 0^{\prime \prime}$	47'0"	51'0"	55'0"	60'5"	69'6"	75'6"	63'6"	69'6"	76'9"
Dimension D	107'0"	$128^{\prime \prime}{ }^{\prime \prime}$	129'0"	129'0"	$113^{\prime \prime}{ }^{\prime \prime}$	111'0"	117'0'	$114^{\prime} 0^{\prime \prime}$	112'0"	$110^{\prime \prime}{ }^{\prime \prime}$
Leg capacity (bu./hr.)	5,000	5,000	6,500	7,500	5,500	6,500	7,500	6,500	7,000	7,500
Hopper scale capacity (tons)	10	15	15	25	15	15	25	15	25	25
Bushels/foot	1,100	1,400	1,730	2,200	1,480	1,975	2,350	1,960	2,425	2,930

AW2

BASE SPECIFICATIONS

Painted construction. Alloyed head shaft; double drum head and boot pully; Holz lagging; 3-ply 330 rubber belt; head explosion vents; jack bolts under the head bearings; SCM/SC series bearings; throat wiper; access doors at the head, boot, inspections section and lagging access.

STRUCTURE TYPE	AW1				AW2		
$\begin{gathered} \hline \text { Discharge } \\ \text { Height } \end{gathered}$	$\begin{gathered} \text { Price for } \\ 3,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 3,500 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 4,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 5,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 6,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 7,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { Price for } \\ 8,000 \mathrm{Bu} / \mathrm{Hr} \end{gathered}$
20^{\prime}							
25							
30^{\prime}							
35							
40^{\prime}							
45							
50^{\prime}							
55							
60^{\prime}							
65							
70'							
75'							
80^{\prime}							
85							
90^{\prime}							
95'							
100'							
105'							
110'							
$115{ }^{\prime}$							
120'							
125'							
130							
135 '							
140^{\prime}							
145 '							
150'							

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
$\mathbf{1}$	Discharge transition to $10^{\prime \prime}$ round, $(+) \ldots \ldots \ldots \ldots$
$\mathbf{2}$	Discharge transition to $12^{\prime \prime}$ round, $(+) \ldots \ldots \ldots \ldots$
$\mathbf{3}$	Discharge transition to $14^{\prime \prime}$ round, $(+) \ldots \ldots \ldots \ldots$
$\mathbf{4}$	Discharge transition to $16^{\prime \prime}$ round, $(+) \ldots \ldots \ldots \ldots$

AP 1

AP3

AP 1

AP 5

BASE SPECIFICATIONS

FOUNDATION - Concrete footings. WALLS - Wood or metal on pole frame. FLOOR - Dirt. ROOF - Double pitch, asphalt shingles or metal roofing on wood rafters and framing. OTHER FEATURES - Minimum electrical service.

BASE PRICES FOR TRUSS ROOF - 12' STANDARD HEIGHT						
STRUCTURE TYPE	AP1	AP2	AP3	AP4	AP5	AP6
	Four Sides, Closed, Metal	Four Sides, Closed, Wood	One Side, Open, Metal	One Side, Open, Wood	Four Sides, Open, Metal	Four Sides, Open, Wood
Area	Price per Square Foot					
600						
1,000						
1,400						
2,000						
3,000						
4,000						
5,000						
6,000						
7,000						
8,000						
9,000						
10,000						
	$\pm 3 \% / \mathrm{F}$	Height	$\pm 2 \% /$	Height	$\pm 2 \% /$	Height

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Concrete floor (+), perSq. Ft.
2	Insulation, $11 / 2^{\prime \prime}(+)$, per Sq. Ft. of wall area
3	Insulation, polystyrene bd., 7/8" (+), per Sq. Ft. of wall area.
4	Insulation, 4"(+) per Sq. Ft. of wall area
5	Wallboard (t), per Sq. Ft. of wall area
6	No electricity, (-), per Sq. Ft.
7	Heating, (+), per Sq. Ft.
8	Wall partitions, (+), per Sq. Ft.

BASE PRICE ADJUSTMENTS	
CODE	SPECIAL MODIFICATION CODES
FP1	14×12 slide door, each
FP2	14×10 slide door, each
FP3	14×8 slide door, each
FP4	16×7 overhead door, each
FP5	9×7 overhead door, each

BH3

BH5

BASE SPECIFICATIONS
FOUNDATION - Concrete footings. WALLS - Wood, metal
on pole frame or metal on steel frame. FLOOR - Concrete.
ROOF - Double pitch, asphalt shingles or metal roofing on
wood rafters and framing. OTHER FEATURES - Windows,
cabinets, electric lighting and water service.

BASE SPECIFICATIONS
FOUNDATION - Concrete footings. WALLS - Open one
side, wood, metal on pole frame or metal on steel frame.
FLOOR - Concrete. ROOF - Double pitch, asphalt
shingles or metal roofing on wood rafters and framing.
OTHER FEATURES - Some end-wall windows, some cab-
inets, electric lighting and water service.

BASE PRICES - 12' HIGH			
STRUCTURE TYPE	BH1	BH2	BH3
	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
600			
1,000			
1,400			
2,000			
3,000			
4,000			
5,000			
6,000			
7,000			
8,000			
9,000			
10,000			
$\pm 2 \% /$ Foot in Height			

BASE PRICES - 12' HIGH			
STRUCTURE TYPE	BH4	BH5	BH6
	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
600			
1,000			
1,400			
2,000			
3,000			
4,000			
5,000			
6,000			
7,000			
8,000			
9,000			
10,000			
$\pm 2 \% /$ Foot in Height			

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Concrete floor (-) per Sq. Ft.
2	Insulation, $1^{1 / 2 \prime}{ }^{\prime \prime}(+)$, per Sq. Ft. of wall area
3	Insulation, polystyrene board, $7 / 8^{\prime \prime}(+)$, per Sq. Ft. of wall area
4	Insulation, $4^{\prime \prime}(+)$, per Sq. Ft. of wall area
5	Wallboard (t), per Sq. Ft. of wall area
6	Heating (t), per Sq. Ft.
7	Wall partitions (t), per Sq. Ft.
CODE	SPECIAL MODIFICATION CODES
FP1	14×12 sliding door, each
FP2	14×10 sliding door, each
FP3	14×8 sliding door, each
FP4	16×7 overhead door, each
FP5	9×7 overhead door, each

BASE SPECIFICATIONS w/ End Walls
FOUNDATION - Concrete foundation and footings.
WALLS - Shingles and wood siding on arched frame or
metal on pre-engineered arched frame or metal on pre-
engineered quonset frame; end wall with sliding door entry.
FLOOR - Concrete. OTHER FEATURES - Adequate light-
ing, outlets and water service.

AQ2

AQ13

BASE SPECIFICATIONS w/ Open Ends	
FOUNDATION - Concrete foundation and footings.	
WALLS - Shingles and wood siding on arched frame or	
metal on light arch-rib frame or metal on light steel quonset	
frame; open end walls. FLOOR - Dirt. OTHER FEA-	
TURES - Minimum electric service.	

BASE PRICES							
16' HIGH ARCH FRAMES W/ END WALLS				16' HIGH ARCH FRAMES W/ OPEN ENDS			
	AQ1	AQ2	AQ3		AQ4	AQ5	AQ6
STRUCTURE TYPE	Wood Arch Frame/Wood Siding	Pole Arch Frame/ Metal Siding	Steel Quonset Frame/Metal Siding	STRUCTURE TYPE	Wood Arch Frame/Wood Siding	Pole Arch Frame/ Metal Siding	Steel Quonset Frame/Metal Siding
Area	Price per Square Foot			Area	Price per Square Foot		
200				200			
300				300			
400				400			
500				500			
700				700			
1,000				1,000			
2,000				2,000			
3,000				3,000			
4,000				4,000			
5,000				5,000			
6,000				6,000			
7,000				7,000			
8,000				8,000			
9,000				9,000			
10,000				10,000			
Over				Over			

BASE PRICE ADJUSTMENTS		BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES	CODE	MODIFICATION CODES
1	Lighting (-), per Sq. Ft.	1	Lighting (-), per Sq. Ft.
2	Asphalt floor (-), per Sq. Ft.	2	Asphalt floor (+), per Sq. Ft. .
3	Concrete floor (-), per Sq. Ft.	3	Concrete floor (t), per Sq. Ft.
4	No water service (-), per Sq. Ft.		
5	Heating (+), per Sq. Ft.		

Note: Costs for Panel Buildings, formerly found on Page 6-28, have been incorporated into the different occupancies. Please see the appropriate use.

BASE SPECIFICATIONS Pre-engineered Frame	
FOUNDATION - Concrete foundation and footings.	
WALLS - Shingles and wood siding on arched frame or	
metal on pre-engineered arched frame or metal on pre-	
engineered quonset frame; end walls; windows, overhead	
door. FLOOR - Concrete. OTHER FEATURES - Some	
cabinets, adequate lighting, outlets and water service.	

BASE SPECIFICATIONS Arch-Rib Frame
FOUNDATION - Concrete foundation and footings.
WALLS - Shingles and wood siding on arch-rib frame or
metal on light steel quonset frame; end walls; sliding door
entry. FLOOR - Light concrete. OTHER FEATURES - Few
extras; minimum electric service.

BASE PRICES							
16' HIGH ARCH FRAMES W/ END WALLS				16' HIGH ARCH FRAMES W/ OPEN ENDS			
	AQ7	AQ8	AQ9		AQ10	AQ11	AQ12
STRUCTURE TYPE	$\begin{aligned} & \text { Wood Arch } \\ & \text { Frame/Wood } \\ & \text { Siding } \end{aligned}$	Pole Arch Frame/ Metal Siding	Steel Quonset Frame/Metal Siding	STRUCTURE TYPE	Wood Arch Frame/Wood Siding	Pole Arch Frame/ Metal Siding	Steel Quonset Frame/Metal Siding
Area	Price per Square Foot			Area	Price per Square Foot		
200				200			
300				300			
400				400			
500				500			
700				700			
1,000				1,000			
2,000				2,000			
3,000				3,000			
4,000				4,000			
5,000				5,000			
6,000				6,000			
7,000				7,000			
8,000				8,000			
9,000				9,000			
10,000				10,000			
Over				Over			

BASE PRICE ADJUSTMENTS		BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES	CODE	MODIFICATION CODES
1	Lighting (-), per Sq. Ft.	1	Lighting (-), per Sq. Ft.
2	Asphalt floor (-), per Sq. Ft.	2	Asphalt floor (-), per Sq. Ft.
3	Concrete floor (-), per Sq. Ft.	3	Concrete floor (-), per Sq. Ft.
4	No water service (-), per Sq. Ft.		
5	Heating (+), per Sq. Ft. .		

ARCH-RIB (QUONSET) FARM UTILITY/IMPLEMENT HOOP BUILDINGS

BASE SPECIFICATIONS Pre-engineered Frame
FOUNDATION - Concrete foundation and footings.
WALLS - Wood pole, knee wall, pipe hoop frame, fabric
cover. FLOOR - Dirt. OTHER FEATURES - Minimum elec-
tric service.

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Lighting (-), per Sq. Ft.
2	Asphalt floor (t), per Sq. Ft. .
3	Concrete floor (+), per Sq. Ft.

BASE PRICES - 16, HIGH ARCH					
STRUCTURE TYPE	AQ13	AQ14	STRUCTURE TYPE	AQ13 (Cont'd.)	AQ14 (Cont'd.)
	$\begin{aligned} & \hline \text { Hoop Utility } \\ & \text { Building } \end{aligned}$	Hoop Implement Building		$\begin{aligned} & \text { Hoop Utility } \\ & \text { Building } \end{aligned}$	Hoop Implement Building
Area	Price per Square Foot		Area	Price per Square Foot	
200			4,000		
300			5,000		
400			6,000		
500			7,000		
700			8,000		
1,000			9,000		
2,000			10,000		
3,000			over		

*Note: FLOOR - Light concrete floor. OTHER FEATURES - Few extras.

AC1

BASE SPECIFICATIONS
FRAME - Wood skeleton frame; spaced boards or wire
mesh. FLOOR - Concrete slab or wood plank. INTERIOR
CONSTRUCTION - No lighting, plumbing or heat. ROOF
- Double pitch, asphalt shingles on wood decking and wood
rafters. OTHER FEATURES - Wood slat partitions.

BASE PRICES PER SQUARE FOOT - 10' HIGH		
STRUCTURE TYPE	AC1	AC2
	Wood Board	WeIded Wire
	Price per Square Foot	
300		
400		
500		
600		
700		
800		
900		
1,000		
1,200		
$\pm 7 \% / \mathrm{Ft}$. . in Height		

AC2

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
$\mathbf{1}$	Storage bin over (wood board) (+), per Sq. Ft.
$\mathbf{2}$	Storage bin over (welded wire) (+), per Sq. Ft. ...
$\mathbf{3}$	Lighting (+) per Sq. Ft.
$\mathbf{4}$	Drive-through cribs (+), per Sq. Ft.

AR 2

BASE SPECIFICATIONS - 10' HIGH

FOUNDATION - Concrete walls and footings. WALLS Drop siding on wood framing; interior wall, 1 " $\times 4$ " wood crib siding. FLOOR - Concrete. ROOF - Double-pitch, asphalt shingles or wood decking, timber rafters and framing. OTHER FEATURES - Electric lighting.

BASE PRICES			
	AR1	AR2	AR3
TURE TYPE	Wood Frame/ Wood Siding	Pole Frame/ Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
800 900 1,000 1,100 1,200 1,400			
$\pm 5 \% /$ oot in Height			

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
$\mathbf{1}$	Wood storage bins (+), per Sq. Ft. $\ldots \ldots \ldots \ldots$
$\mathbf{2}$	Wood ventilating ducts (+), per Sq. Ft.
$\mathbf{3}$	No lighting (-), per Sq. Ft.
$\mathbf{4}$	Pier foundation (-), per Sq. Ft.
$\mathbf{5}$	Second floor (+), per Sq. Ft.

AC3

AC4

BASE SPECIFICATIONS
Concrete foundation and floor, wire mesh walls on steel frame, metal roof, central air duct.

BASE PRICES			
STRUCTURE TYPE			AC3
Diameter	Height	Bushel Capacity	\#2-Gauge Wire
$12^{\prime} 8^{\prime \prime}$	16^{\prime}	611	
	21^{\prime}	865	
	18^{\prime}	1,085	
	23^{\prime}	1,515	
	28^{\prime}	1,940	

BASE PRICES			
STRUCTURE TYPE			AC4
Diameter	Height	Bushel Capacity	\#4-Gauge Wire
$12^{\prime} 8^{\prime}$	16^{\prime}	611	
	21^{\prime}	865	
$16^{\prime} 6^{\prime \prime}$	18^{\prime}	1,085	
	23^{\prime}	1,515	

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
$\mathbf{1}$	No concrete slab (-), per Sq. Ft. $\ldots \ldots \ldots \ldots \ldots$

POTATO STORAGE BUILDINGS

A07

BASE SPECIFICATIONS - BELOW GROUND

STRUCTURE - No foundation, dirt floor and side walls. END WALLS ONLY - Concrete block, wood or metal on pole frame. ROOF - Double-pitched roof with roll asphalt on wood rafters and decking covered with straw and dirt; INTERIOR CONSTRUCTION - Electric lighting.

BASE PRICES - 10' HIGH			
STRUCTURE TYPE Below Ground	AO1	AO2	AO3
	Concrete Block	Wood Frame/ Wood Siding	Pole Frame Metal Panels
Area	Price per Square Foot		
1,000			
2,000			
3,000			
4,000			
6,000			
8,000			
10,000			
15,000			

BASE SPECIFICATIONS - ABOVE GROUND
FOUNDATION - Concrete foundation and footing.
WALLS - Block/heaped earth, wood, metal on pole frame
or steel. CEILING - Insulated ceiling. FLOOR - Concrete
floor. ROOF - Double-pitched roof with asphalt shingles on
wood rafters and decking or steel sheeting. INTERIOR
CONSTRUCTION - Electric lighting.

BASE PRICES - 16' HIGH				
	AO4	AO5	AO6	A07
STRUCTURE TYPE Above Ground	Concrete Block/ Heaped Earth	Wood Frame Wood Siding	Pole Frame Metal Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot			
1,000				
2,000				
3,000				
4,000				
6,000				
8,000				
10,000				
15,000				
$\pm 2 \% / F$ oot in Height				

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODE
$\mathbf{1}$	No insulation (-), per Sq. Ft. $\ldots \ldots \ldots \ldots \ldots$

TOBACCO BARNS

BASE SPECIFICATIONS	
STRUCTURE - Concrete foundation and footing.	
WALLS - Wood, pole frame or steel. FLOOR - Concrete	
floor. ROOF - Asphalt shingles on decking with wood fram-	
ing or steel. INTERIOR CONSTRUCTION - Partially fin-	
ished interior; flue-curing; racks; electric lighting; water ser-	
vice.	

BASE PRICES - 10' HIGH				
	A08	A09	AO10	AO11
STRUCTURE TYPE	Wood Frame/ Wood Siding	*Wood Framel Vented Walls	$\begin{gathered} \text { Pole } \\ \text { Frame/ } \\ \text { Metal } \\ \text { Siding } \end{gathered}$	
Area	Price per Square Foot			
500				
1,000				
2,000				
3,000				
4,000				
6,000				
8,000				
10,000				
*Note: Wood frame with vented wood walls. Concrete pier foundation; dirt floor; asphalt shingles on decking with wood framing. Unfinished interior; rack; air curing.				

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	No lighting (-), per Sq. Ft. .
2	Concrete floor (-), per Sq. Ft.
3	No water service (-), per Sq. Ft.
CODE	SPECIAL MODIFICATION CODES
FO1	$24^{\prime \prime}$, ventilating fan, add each
FO2	36 ", ventilating fan, add each ...

$\begin{array}{c}\text { STRAIGHT-WALL STRUCTURES - 12' HIGH } \\ \text { (Heating systems and benches are not included.) }\end{array}$						
STRUCTURE TYPE	AN1	AN2	AN3	AN4	AN5	
	$\begin{array}{c}\text { Steel and } \\ \text { Aluminium } \\ \text { Frame/Glass }\end{array}$	Pipe Frame/Glass	$\begin{array}{c}\text { Light Pipe or } \\ \text { Wood Frame/Glass }\end{array}$	Steel Frame/Plastic		

Wood Frame/Plastic\end{array}\right]\)

HOOP STRUCTURES - 12' High(Heating systems and benches are not included.)				
	AN6	AN7	AN8	AN9
STRUCTURE TYPE	Pipe Frame/ Polycarbonate or Acrylic Cover	Light Pipe Frame/ Arch Frame/ Fiberglass Panels	Pipe or Light Tubular Arch/Double Polyethylene Cover	Light Pipe Arch/Wide Spacing Polyethylene Cover
Area	Price per Square Foot			
500 1,000 3,000 6,000 10,000 $20,000 \&$ Over				
BASE SPECIFICATIONS FOR: AN6 - R oof and wall vents, concrete walks, electrical and water service. AN7 - Some vents, gravel, some concrete, electrical and hose bibs. AN8 - Double polyethylene cover, fiberglass ends and knee walls, gravel floor, minimum electrical, lighting and hose bibs. AN9 - Polyethylene cover, dirt floor, no electrical, hose bib only.				

NORMAL DEPRECIATION TABLE FOR GREENHOUSES					
AGE IN YEARS	DEPRECIATION	AGE IN YEARS	DEPRECIATION	AGE IN YEARS	DEPRECIATION
0-1	. 10\%	6-7	35\%	16-17	60\%
2 15\%	8-9 40\%	18-19	... 65\%
3 20\%	10-11 45\%	20-21 70\%
4 25\%	12-13 50\%	Over 75\%
5	.. 30\%	14-15	.. 55\%		

FARM LABOR HOUSING - DORMITORIES

BASE PRICES - 8' HIGH			
	BM1	BM2	BM3
STRUCTURE TYPE	Concrete Block	Wood Frame/ Wood Siding	Steel Frame/ Steel Siding
Area	Price per Square Foot		
800			
1,000			
1,200			
1,400			
1,600			
1,800			
2,000			
2,200			
2,400			
2,600			
2,800			
3,000			
$\pm 2 \% / \mathrm{F}$ oot in Height			

BASE SPECIFICATIONS: B
FOUNDATION - Concrete footings. WALLS - Low-cost brick
or block masonry, wood siding on wood frame or steel siding
on steel frame. FLOOR - Concrete. ROOF - Double pitched,
asphalt shingle on wood decking, rafters and framing or steel
on steel frame. OTHER FEATURES - Good fenestration, in-
sulation, gypsum or plywood partitions, individual rooms,
lighting and outlets in each room, common shower room.

BASE SPECIFICATIONS: C
FOUNDATION - Concrete footings. WALLS - Block mason-
ry, wood siding on wood box frame or wide-spaced studs, or
steel panels on steel frame. FLOOR - Concrete. ROOF -
Double pitched, asphalt shingle on wood decking, rafters and
framing or steel on steel frame. OTHER FEATURES - Ade-
quate fenestration, common rooms, adequate lighting,
plumbing and common restroom.

BASE SPECIFICATIONS: D

FOUNDATION - Concrete footings. WALLS - Low-cost block masonry, wood siding with battens on wood box frame or lowcost steel panels on steel frame. FLOOR - Concrete. ROOF - Double pitched, asphalt shingles on wood decking, rafters and framing or steel on steel frame. OTHER FEATURES - Unfinished interior, no partitions, minimum lighting and water service.

TRANSIENT LABOR CABINS

BASE PRICES - 8' HIGH	
STRUCTURE TYPE	BM4
	Wood Frame/Wood Siding
800	Price per Square Foot
1,000	
1,200	
1,400	
1,600	
1,800	
2,000	
2,200	
2,400	
2,600	
2,800	
$\pm 2 \% /$ Foot in Height	

BASE SPECIFICATIONS
FOUNDATION - concrete. WALLS - Wood box frame with
plywood, board and battens or metal siding. FLOOR - Con-
crete or boards on wood joists. ROOF - Double pitched, as-
phalt shingle on wood decking, rafters and framing. OTHER
FEATURES - No partitions, minimum cabinetry, one or two
lights and outlets, sink with cold water.

BASE PRICE ADJUSTMENTS	
CODE	MODIFICATION CODES
1	Insulation, $1^{1 / 2 "}(+)$, per Sq. Ft. of wall area
2	Insulation, polystyrene bd., 7/8" (+), perSq. Ft. of wall area
3	Insulation, 4" (+), per Sq. Ft. of wall area .
4	Wall board (t), per Sq. Ft. of wall area
5	No electricity (-), per Sq. Ft.
6	Heating (+), per Sq. Ft.
7	Wall partitions (+), per Sq. Ft.

Railroad Spurs

Average costs per linear foot for a 500 -foot spur. Costs include rails, ties, ballast, spikes and alignment. Cost of turnouts are an additive to the rail cost.

Add or deduct 2\% for each 100 feet of track under 500 feet. (25% maximum deduction)

Weight of Rail (pounds per yard)	Cost Installed (per foot of track)	Add for Switch and Turnout
40\#		
60\#		
80\#		
100\#		
130\#		

Elevated Steel Tanks

Costs include: tank, tower or pedestal, riser pipe, ladder, and other equipment normally installed, completely erected as well as typical foundations and painting.

Capacity	Tower Height			
(gallons)	50'	75'	100'	150'
25,000				
50,000				
75,000				

Welded Steel Pressure Tanks

Costs are for complete standard horizontal installation on legs or saddle pads, including normal fittings on tank but not pipe, values or foundation.

Underground Steel Double Wall Tanks

Costs are for Completely installed tanks, including fittings, access mainway, excavation and backfill. For difficult soil conditions, add for extra cost of excavation and bedding, a necessary. Costs do not include piping.

Vertical Welded Steel Tanks

Costs are averages for mild steel welded tanks, including sand and gravel foundations, fittings, and roof.

CDU RATING SYSTEM 6-1
APPLYING THE CDU SYSTEM 6-2
OTHER BUILDING IMPROVEMENT DEPRECIATION 6-5
BASIC PERCENT GOOD TABLES 6-6

CDU RATING SYSTEM

As houses grow older, they wear out; they become less desirable, less useful. This universal decline in value is called depreciation, and appraisers are required to determine the degree of this loss in each property they examine.

If all houses deteriorated at the same rate, this decline in value would be a simple function of the age of the structure-a certain percentage per year. However, houses depreciate at varying rates depending on a score or so of variables.

Every building is acted upon by two depreciating forces. One tends to shorten its physical life. The other shortens its economic life. Both depreciating forces act concurrently. They overlap and affect each other.

A new house, or any type of structure for thatmatter, has its greatest value at the moment of completion. Its expectancy of life-both physical and economic-is longest the day the key is handed over by the builder. The building ismost desirable. It is most useful. The future benefits the occupant may expect to enjoy are at the maximum. From that day forward, however, decay and wear and tear act to lessen the value of the structure by curtailing its remaining capacity for use.

At the same time the house is wearing out, it is also going out of style. It is becoming less desirable. It is progressively becoming less useful both from the effect of forces within the property (obsolescence), and from those outside of it as well (encroachment of undesirable influences).

Neither physical decline nor functional loss is constant in its action. Deterioration is a relatively steady process offset periodically by maintenance. Wornout elements of the building are repaired or replaced at intervals depending upon the policy of the owner. Cheaper houses generally deteriorate faster than better ones. Obsolescence and encroachment may come slowly or may happen almost overnight.

The forces which cause both deterioration and functional/economic depreciation may, and often do, act simultaneously, but they are not necessarily related. A house may decline in physical condition and yet throughout its entire life remain relatively functional.

Obviously enough, the age of a house remains an important factor in estimating accrued depreciation. A certain number of houses will receive "normal" maintenance and will experience "average" economic loss due to obsolescence and functional depreciation. These buildings will depreciate at an "average" rate as they grow older.

Other houses will lose value (depreciate) at lesser or more rapid rates. CDU Ratings provide a logical reasoning process bymeans of which normal age depreciation may be modified according to the appraiser's best determination of the relative loss of value in a structure as compared with the average loss that might be expected.

Thus the age of a dwelling is an unreliable indicator of the degree of depreciation from its cost new. For houses depreciate not merely because they grow older, but because they wear out and become less desirable and less useful from a variety of causes.

To assist the appraiser in establishing the CDU Ratings of buildings, eight simple classifications have been established. These classifications or ratings are entirely natural
and will fit the normal impressions of the appraiser examining a building. The table below is a tabulation of CDU Ratings, with their accompanying definitions of the observed physical condition of the building, and the building's degree of desirability and usefulness, for its AGE and for its TYPE.

CDU RATING GUIDE

CDU RATING OF DWELLING	DEFINITION
Excellent	Building is in perfect condition; very attractive and highly desirable.
Very good	Slight evidence of deterioration; still attractive and quite desirable.
Good	Minor deterioration visible; slightly less attractive and desirable, but useful.
Average	Normal wear and tear is apparent; average attractiveness and desirability.
Fair	Marked deterioration - but quite usable; rather unattractive and undesirable.
Poor	Definite deterioration is obvious; definitely undesirable, and barely usable.
Very poor	Condition approaches unsoundness; extremely undesirable and barely usable.
Unsound	Building is definitely unsound and practically unfit for use.

AGE is reflected as an index of the normal deterioration and obsolescence in a structure which may be expected over the years. CONDITION represents a variable measure of the effects of maintenance and remodeling on a building. DESIRABILITY is a measure of the degree of appeal a particular building may have to prospective purchasers. USEFULNESS is ameasure of the utility value of the structure for the purpose for which it may be used.

Once the CDU Rating of a building has been established through a consideration of its condition, desirability and usefulness, for its age and its type, reference to the Basic Depreciation Table will indicate the appropriate depreciation allowance for a structure possessing these qualities, in the degree observed and noted by the appraiser.

The term Basic Depreciation is appropriate to define the allowance for depreciation established by the method suggested here, for it is truly basic depreciation which has been sought and found. It represents a determination of a single depreciation allowance which reflects the total combined effect upon value of all of the depreciating forces, both physical and functional in nature.

The degree of deterioration and obsolescence, or loss of value from all causes, both within and outside the property, are automatically taken into account. This is accomplished by means of a simple rating of the capabilities and qualities of the structure, in precisely the same terms as would a prospective purchaser. And sound valuation theory presupposes the existence of a prospective buyer with intelligence enough to compare the advantages and disadvantages of competing properties and then rate the property he is examining according to its relative degree of desirability and usefulness.

Percent good is defined as the resultant estimate of the diminishing value of an improvement after subtracting the amount of estimated depreciation from the Replacement Cost New. For example, a structure which is estimated to be 45 percent depreciated as of a given time has a percent good of 55. Therefore, depreciation and percent good are complements of each other.

APPLYING THE CDU SYSTEM

To apply the CDU System, the appraiser rates each house according to his or her composite impression of its relative condition, desirability and usefulness-for its age and
type. The following four actual cases illustrate this convenient and practical method of determining percent good in houses.

CASE ONE: A fifteen-year-old single-family residence situated in an attractive residential suburb of a typical American community. Grade B, with two baths. Minor deterioration is visible; slightly less attractive and desirable than new, but useful. A qualified observer would rate this house above average on the CDU Rating System. Accordinly, our appraiser has assigned it a CDU Rating of Good. Referring to the table, we find 85% Good would be appropriate.

CASE TWO: A one-story frame house, seven years old. Grade C or average-quality construction; three bedrooms, one and one-half baths. Structure shows normal wear and tear and has average attractiveness and desirability. The appraiser's impression is that, "For a seven-year-old Grade C house, this would be rated as Average." From the table, we find 88% Good to be indicated.

CASE THREE: This century-old Colonial-style frame house is located in a New England seaport community; erected 1858. Grade B or good-quality construction. Building has been extremely well maintained and completely modernized with central heaing, electric lighting and modern plumbing added. The structure is in good physical condition in spite of its age. Building is architecturally attractive and quite desirable. The appraiser's impression is that, "For a very old house of Grade B quality, this is an Excellent one." From the table, 65\% Good is indicated.

CASE FOUR: A twenty-four-year-old single-family residence of Grade C quality; one story and basement, frame construction; three bedrooms with bath. Structure has had normal maintenance and is in average physical condition. Within the past two years an elevated six-lane expressway has been erected passing over the adjoining lot. This encroachment has seriously detracted from the attractiveness and desirability of the property. Accordingly, the appraiser has assigned a CDU Rating of Very Poor. From the table, 54% Good is indicated.

DWELLING DEPRECIATION

1. Rate the dwelling in terms of its overall condition, desirability and usefulness.
2. Select the proper percent good relative to its actual age.

BASIC PERCENT GOOD TABLE	
RATING GUIDE	
Excellent	Building is in perfect condition; very attractive and highly desirable.
Very good	Slight evidence of deterioration; still attractive and quite desirable.
Good	Minor deterioration visible; slightly less attractive and desirable, but useful.
Average	Normal wear and tear is apparent; average attractiveness and desirability.
Fair	Marked deterioration - but quite usable; rather unattractive and undesirable.
Poor	Definite deterioration is obvious; definitely undesirable, and barely usable.
Very poor	Condition approaches unsoundness; extremely undesirable and barely usable.
Unsound	Building is definitely unsound and practically unfit for use.

Actual Age	CDU RATING OF DWELLING							
	Excel.	V. Good	Good	Average	Fair	Poor	V. Poor	Unsound
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26-30								
31-40								
41-50								
51-60								
61-70								
71-80								
81 \& over								

Note: This dwelling CDU table is based on a weighted average of parcel samples taken throughout the state, and consequently is meant to be used as a guide only. It may or may not be an accurate measure for each municipality.

The appraisal of other building improvements for both residential and agricultural properties is a difficult task. Other building improvements are rarely purchased or sold separately from the balance of the property. The cost of construction of a swimming pool, which is built for the convenience and comfort of a property owner, will rarely add an equivalent amount to the market value of the property. The cost of construction of a farm outbuilding that can be justified by its contribution to the farming operation, will again, seldom add an equivalent amount to the market value of the property.

In effect, other building improvements have value in direct proportion to their degree of utility or usefulness. This is an extension of the principle of contribution, which affirms that the value of any factor in production is dependent upon the amount to which it contributes to the overall net return irrespective of the cost of its construction. Any effective approach to the valuation of other building improvements must reflect the action of investors. Informed farm owners and operators would not invest in buildings which could not pay for themselves by either maintaining or adding to the required level of productivity. Homeowners would not invest in swimming pools, detached garages, etc., which would not supply the degree of comfort and/or convenience they desire.

The physical condition of an other building improvement bears a direct relationship to the desirability and usefulness of that improvement. It is, therefore, possible to apply the CDU system previously explained to generate a percent good estimate for different types of improvements of varying ages based on condition, desirability and usefulness.

The CDU Rating system has been modified to assist the appraiser in developing applicable depreciation guidelines based upon the condition, desirability and usefulness of various out-building improvements.

For the appraisal of other building improvements, the term CDU Rating is modified to become Condition Rating. The term Condition Rating will still give the same consideration to all the factors which influence the overall condition, desirability and degree of usefulness of each structure. The eight CDU Ratings have been modified to become six Condition Ratings. These ratings are again intended to fit the normal impressions of an appraiser as he or she examines an improvement. Condition Ratings, with their accompanying definitions, are as follows:

COND. RATING OF IMPROVEMENT	DEFINITION
Excellent	Improvement is in "like new" condition; very useful and highly desirable.
Good	Minor deterioration visible; slightly less desirable, but useful.
Average	Normal wear and tear is apparent; average usefulness and desirability.
Fair	Marked deterioration - but quite usable; rather undesirable.
Poor	Definite deterioration is obvious; definitely undesirable, and barely usable.
Unsound	Building is definitely unsound and practically unfit for use.

Six individual PercentGood Tables have been developed to assist the appraiser in val uing the various other building improvements that are normally encountered. The
following is a list of these six tables, the type of applicable improvements and their respective structure type codes.

1. Select the proper table based on the type of structure.
2. Rate the structure in terms of its overall condition, desirability and usefulness.
3. Select the proper percent good relative to actual age.

TABLE 1

1. RG1 - detached frame or concrete block garage
2. RG2 - detached masonry or log garage
3. RG3-pole-frame garage
4. AB1 - general-purpose bank barns -- masonry
5. AB2 - general-purpose bank barns - wood frame
6. AB3 - general-purpose bank barns -- pole frame
7. AD1 - special-purpose dairy and horse barns - 2-story masonry
8. AD2 - special-purpose dairy and horse barns - 2-story wood
9. AD3 - special-purpose dairy and horse barns - 2-story pole frame
10. AD4 - special-purpose dairy and horse barns - 1-story masonry
11. AD5 - special-purpose dairy and horse barns - 1-story wood
12. AD6 - special-purpose dairy and horse barns - 1-story pole frame
13. BM1 - farm labor housing - dormitories - concrete block
14. BM2 - farm labor housing - dormitories - wood frame/wood siding
15. BM3 - farm labor housing - dormitories - steel frame/steel siding
16. BM4 - transient labor cabins - wood frame/wood siding
17. BT1 - wood frame/wood siding
18. BT2 - pole frame/metal siding
19. BT3 - steel frame/steel siding
20. BT4 - wood frame/wood siding
21. BT5 - pole frame/metal siding
22. BT6 - steel frame/steel siding

PERCENT GOOD TABLE 1
STRUCTURE TYPE CODES: RG1, RG2, RG3, AB1, AB2, AB3, AD1, AD2, AD3, AD4, AD5, AD6, BM1, BM2, BM3, BM4, BT1, BT2, BT3, BT4, BT5, BT6

Actual Age		CONDITION RATING				
	Excel.	Good	Average	Fair	Poor	Unsound
$0-5$						
$6-10$						
$11-15$						
$16-20$						
$21-25$						
$26-30$						
$31-35$						
$36-40$						
$41-45$						
$46-50 \&$ over						

TABLE 2

1. AB4-general-purpose flat barns - masonry
2. AB5-general-purpose flat barns - wood frame
3. AB6 -- general-purpose flat barns - pole frame
4. AM 1 - milk houses - attached concrete block
5. AM2-milk houses - attached wood frame
6. AM 3 - milk houses - attached pole frame
7. AM4-milk houses - detached concrete block
8. AM5 - milk houses - detached wood frame
9. AM6-milk houses - detached pole frame
10. AM 7 - milking parlors - attached concrete block
11. AM8 - milking parlors - attached wood frame
12. AM9 - milking parlors - attached pole frame
13. AM 10 - milking parlors - detached concrete block
14. AM 11 - milking parlors - detached wood frame
15. AM 12 - milking parlors - detached pole frame
16. AM13 - milking parlors - steel frame/steel siding
17. AS 1 - concrete stave silo - with roof
18. AS2 - concrete stave silo - without roof
19. AS5 - concrete poured silo - with roof
20. AS6 - concrete poured silo - without roof

PERCENT GOOD TABLE 2						
STRUCTURE TYPE CODES: AB4, AB5, AB6, AM1, AM2, AM3, AM4, AM5, AM6, AM7, AM8, AM9, AM10, AM11, AM12, AM13, AS1, AS2, AS5, AS6						
Actual Age	CONDITION RATING					
	Excel.	Good	Average	Fair	Poor	Unsound
$\begin{gathered} 0-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \end{gathered}$						
$26-30$ $31-35$ $36-40$ $41-45$ $46-50 \&$ over						

TABLE 3

1. AC1 - frame corn cribs - wood board
2. AC2-frame corn cribs - welded wire
3. AE2-45-degree hopper bottom tanks
4. AE3-Fiberglass bottom bulk storage tanks
5. AH1 - poultry layer houses - 1-story pole frame/metal siding
6. AH2 - poultry layer houses - 2-story pole frame/metal siding
7. AH3-poultry layer houses-1-story concrete block
8. AH4 - poultry layer houses - 2 -story concrete block
9. AH5-poultry layer houses - 1-story steel frame/steel siding
10. AH6-poultry layer houses-2-story steel frame/steel siding
11. AH7 - poultry broiler houses - concrete block
12. AH8 - poultry broiler houses --pole frame/metal siding
13. AH9 - poultry broiler houses - steel frame/steel siding
14. AH10-turkey barns - pole frame/metal siding
15. AH 11 - turkey barns - steel frame/steel siding
16. AO1 - potato storage buildings - concrete block
17. AO2 - potato storage buildings - wood frame/wood siding
18. AO3 - potato storage buildings - pole frame/metal siding
19. AO 4 - potato storage buildings - concrete block/heaped earth
20. AO 5 - potato storage buildings - wood frame/wood siding
21. A 06 - potato storage buildings - pole frame/metal siding
22. AO7 - potato storage buildings - steel frame/steel siding
23. AO8 - tobacco barns - wood frame/wood siding
24. AO9 - tobacco barns - wood frame/vented walls
25. AO 10 - tobacco barns - pole frame/metal siding
26. AO11 - tobacco barns - steel frame/steel siding
27. AR1 - granaries - wood frame/wood siding
28. AR2 - granaries - pole frame/metal siding
29. AR3 - granaries - steel frame/steel siding
30. AS 3 - porcelain silos (Harvestore ${ }^{\text {TM }}$) - price new
31. AS 4 - porcelain silos (Harvestore ${ }^{\text {TH }}$) - price preowned/rebuilt
32. AV1 - hog nursery barns - wood frame/wood siding
33. AV2 - hog nursery barns - pole frame/metal siding
34. AV3 - hog nursery barns - steel frame/steel siding
35. AV 4 - hog farrowing barns - wood frame/wood siding
36. AV5 - hog farrowing barns - pole frame/metal siding
37. AV6 - hog farrowing barns - steel frame/steel siding
38. AV17 - automated nipple watering system for hogs - galvanized steel, obsolete
39. AV18 - automated nipple watering system for hogs - stainless steel
40. AX1 - loading/unloading system - auger-type conveyors
41. AX2-loading/unloading system - belt-type conveyors

PERCENT GOOD TABLE 3						
STRUCTURE TYPE CODES: AC1, AC2, AE2, AE3, AH1, AH2, AH3, AH4, AH5, AH6, AH7, AH8, AH9, AH10, AH11, AO1, AO2, AO3, AO4, AO5, AO6, A07, AO8, AO9, A010, AO11, AR1, AR2, AR3, AS3, AS4, AVA1, AV2, AV3, AV4, AV5, AV6, AV17, AV18, AX1, AX2						
Actual Age	CONDITION RATING					
	Excel.	Good	Average	Fair	Poor	Unsound
0-5						
6-10						
11-15						
16-20						
21-25						
26-30						
31-35						
36-40						
41-45						
46-50 \& over						

TABLE 4

1. RC1-carport
2. RC2-canopy
3. RS1 - frame utility shed
4. RS2 - metal utility shed
5. AB7-free-stall dairy/beef barns - wood frame/wood siding
6. AB8 - free-stall dairy/beef barns - pole frame/metal siding
7. AB9-free-stall dairy/beef barns - steel frame/steel siding
8. AB10-free-stall dairy/beef barns - steel arch-rib frame/wire panels
9. AE1-hopperscales
10. AF 1 - concrete feed bunk
11. AF 2 - post-and-plank feed bunk
12. AF 3 - concrete fence bunk
13. AF 4 - post-and-plank fence bunk
14. Al1 - personal manlift
15. AL1 - lean-to - wood frame/wood siding
16. AL2 - lean-to - pole frame/metal siding
17. AL3 - lean-to - steel frame/steel siding
18. AP1 - pole-frame utility buildings - four sides, closed metal
19. AP2 - pole-frame utility buildings - four sides, closed wood
20. AP3 - pole-frame utility buildings - one side, open metal
21. AP 4 - pole-frame utility buildings - one side, open wood
22. AP5 - pole-frame utility buildings - four sides, open metal
23. AP6-pole-frame utility buildings - four sides, open wood
24. AQ1- arch-rib (quonset) farm utility buildings - wood arch frame/wood siding, with end walls
25. AQ2 - arch-rib (quonset) farm utility buildings - pole arch frame/metal siding, with end walls
26. AQ3 - arch-rib (quonset) farm utility buildings - steel quonsetframe/metal siding, with end walls
27. AQ4 - arch-rib (quonset) farm utility buildings - wood arch frame/wood siding, with open ends
28. AQ5 - arch-rib (quonset) farm utility buildings - pole arch frame/metal siding, with open ends
29. AQ 6 - arch-rib (quonset) farm utility buildings-steel quonsetframe/metal siding, with open ends
30. AQ 7 - arch-rib (quonset) farm implement buildings - wood arch frame/ wood siding, with end walls
31. AQ8 - arch-rib (quonset) farm implement buildings - pole arch frame/ metal siding, with end walls
32. AQ9 - arch-rib (quonset) farm implement buildings - steel quonset frame/metal siding, with end walls
33. AQ 10-arch-rib (quonset) farm implement buildings - wood arch frame/ wood siding, with open ends
34. AQ 11 - arch-rib (quonset) farm implement buildings - pole arch frame/ metal siding, with open ends
35. AQ12 - arch-rib (quonset) farm implement buildings - steel quonset frame/metal siding, with open ends
36. AQ13 - arch-rib (quonset) farm utility hoop buildings
37. AQ14-arch-rib (quonset) farm implement hoop buildings
38. AV7 - hog breeding/gestation barns - wood frame/wood siding
39. AV8 - hog breeding/gestation barns - pole frame/metal siding
40. AV9 - hog breeding/gestation barns - steel frame/steel siding
41. AV10 - hog finishing barns - wood frame/wood siding
42. AV 11 - hog finishing barns - pole frame/metal siding
43. AV 12 - hog finishing barns - steel frame/steel siding
44. AV13 - hog sheds - wood frame/wood siding
45. AV 14 - hog sheds - pole frame/metal siding
46. AV15 - hog sheds - arch-rib/fabric cover
47. AV 16 - hog sheds - steel frame/steel siding
48. AY1 - grain elevators - wood crib/metal clad
49. AY2 - grain elevators - concrete (slip form construction)
50.BA1 - stables - wood frame/wood siding
50. BA 2 - stables - pole frame/metal siding
51. BA 3 - stables - steel frame/steel siding
52. BA4 - high value (estate) stables - concrete block/brick, stone or tile
53. BA5 - high value (estate) stables - wood frame/brick, stone or tile
54. BC 1 - arenas - w/feed, tack and washrooms - pole frame/metal siding
55. BC 2 - arenas - w/feed, tack and washrooms - steel frame/steel siding
56. BC 3 - arenas - arena only - pole frame/metal siding
57. BC4 - arenas - arena only - steel frame/steel siding
58. BD1 - farm commodity storage buildings - concrete block
60.BD2 - farm commodity storage buildings - wood frame/wood siding
59. BD3 - farm commodity storage buildings - pole frame/metal siding
60. BD4 - farm commodity storage buildings - steel frame/steel siding
61. BG1 - feeder barns (cattle sheds) - wood frame/wood siding
62. BG 2 - feeder barns (cattle sheds) - pole frame/metal siding
63. BG 3 - feeder barns (cattle sheds) - steel frame/steel siding
64. BH1 - farm implement (equipment shop) buildings - wood frame/wood siding
65. BH2 - farm implement (equipment shop) buildings - pole frame/metal siding
66. BH 3 -farm implement (equipment shop) buildings- steel frame/steel siding
69.BH4- farm implement equipment sheds - wood frame/wood siding
67. BH5 - farm implement equipment sheds - pole frame/metal siding
68. BH6- farm implement equipment sheds - steel frame/steel siding
69. BL1 - truck scales
70. GZ1 - standard
71. GZ2 - deluxe

PERCENT GOOD TABLE 4						
STRUCTURE TYPE CODES: RC1, RC2, RS1, RS2, AB7, AB8, AB9, AB10, AE1, AF1, AF2, AF3, AF4, Al1, AL1, AL2, AL3, AP1, AP2, AP3, AP4, AP5, AP6, AQ1, AQ2, AQ3, AQ4, AQ5, AQ6, AQ7, AQ8, AQ9, AQ10, AQ11, AQ12, AQ13, AQ14, AV7, AV8, AV9, AV10, AV11, AV12, AV13, AV14, AV15, AV16, AY1, AY2, BA1, BA2, BA3, BA4, BA5, BC1, BC2, BC3, BC4, BD1, BD2, BD3, BD4, BG1, BG2, BG3, BH1, BH2, BH3, BH4, BH5, BH6, BL1, GZ1, GZ2						
Actual Age	CONDITION RATING					
	Excel.	Good	Average	Fair	Poor	Unsound
$\begin{gathered} 0-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \\ 26-30 \& \text { over } \end{gathered}$						

1. RN1-greenhouses (conventional)
2. RN2 - greenhouses (solar)
3. AC3-wire corn cribs - \#2 gauge wire
4. AC4-wire corn cribs - \#4 gauge wire
5. AG1 - steel grain bins - without drying bins
6. AG2 - steel grain bins - with drying bins
7. AG3-steel tanks
8. AK1 - bunker silos - concrete panels w/ 3" concrete floor
9. AK2 - bunker silos - wood plank w/ 3" concrete floor
10. AN 1 - commercial greenhouses - straight wall structures - steel and aluminum frame/glass
11. AN2 - commercial greenhouses - straight wall structures - pipe frame/ glass
12. AN3 - commercial greenhouses - straight wall structures - light pipe or wood frame/glass
13. AN 4 - commercial greenhouses - straight wall structures - steel frame/ plastic
14. AN5 - commercial greenhouses - straight wall structures - light pipe or wood frame/plastic
15. AN6-commercial greenhouses - hoop structures - pipe frame/polycarbonate or acrylic cover
16. AN7-commercial greenhouses - hoop structures-lightpipe frame/arch frame/fiberglass panels
17. AN8 - commercial greenhouses - hoop structures - pipe or light tubular arch/double polyethylene cover
18. AN9 - commercial greenhouses - hoop structures - light pipe arch/wide spacing polyethylene cover
19. AT 1 - trench silos - concrete panels w/ 3" concrete floor
20. AT2 - trench silos - wood plank w/ 3" concrete floor
21. AT3 - trench silos - dirt, plastic lined, no flooring
22. AW 1 - bucket elevators - 3,000 to 5,000 bu/hr
23. AW2 - bucket elevators - 6,000 to 8,000 bu/hr
24. AW3 - horizontal drag (u-trough) conveyors
25. AZ1 - grain dryers - batch type
26.AZ2 - grain dryers - continuous-flow type
26. BF 1 - flathouse storage buildings - pole frame/metal siding
27. BF2 - flathouse storage buildings - steel frame/steel siding
28. BF 3 - flathouse storage buildings - steel slant-wall frame/steel siding
29. BK1 - slurry tanks

PERCENT GOOD TABLE 5

STRUCTURE TYPE CODES: RN1, RN2, AC3, AC4, AG1, AG2, AG3, AK1, AK2, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AT1, AT2, AT3, AW1, AW2, AW3, AZ1, AZ2, BF1, BF2, BF3, BK1						
Actual Age	CONDITION RATING					
	Excel.	Good	Average	Fair	Poor	Unsound
0-5						
6-10						
11-15						
16-20						
21-25 \& over						

TABLE 6

1. RP1 - plastic lined pool
2. RP2 - prefabricated vinyl pool
3. RP3 - reinforced concrete pool
4. RP4-fiberglass pool
5. RP5-gunite pool

PERCENT GOOD TABLE 6						
STRUCTURE TYPE CODES: RP1, RP2, RP3, RP4, RP5						
Actual Age		CONDITION RATING				
	Excel.	Good	Average	Fair	Poor	Unsound
$0-5$						
$6-10$						
$11-15 \&$ over						

TABLE 7

1. RM1-mobile home

PERCENT GOOD TABLE 5								
STRUCTURE TYPE CODES: RM1,								
Actual Age	CONDITION RATING							
	Excel.	V. Good	Good	Average	Fair	Poor	V. Poor	Unsound
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21-25								
26-30								
31-35								
36-40								
Over 40								

The tables mentioned above are supplied as guidelines to the appraiser and are not intended to replace sound appraisal judgment.

SKETCH		Eff Frt	- Effective frontage
1 sFR	- One-story frame	Eff D	- Effective depth
1 s Br	- One-story brick	EMF	_ Economical misimprovement
1 s STN	- One-story stone		
1 CB	- One-story concrete block	Esmt	- Easement
1s Stucco	- One-story stucco	F 33'	- Figured frontage of 33 feet
		FR 56'	- Figured rear frontage of 56 feet
$1^{5} \mathrm{FR}$	- One-and-one-half-story frame and	Frt	- Frontage
B	basement	HS	- Homesite
$1^{\text {s }}$ BR		IF	- Influence factor
$\overline{1^{s} B R}$	- Two-story brick	Imp	- Improvement
$112{ }^{5}$ BR		Irr	- Irregular
$1^{\text {s }} \mathrm{BR}$	- Two-and-one-half-story brick	LI	- Land improvement
$1^{5} \mathrm{BR}$		L \& B	- Land and buildings
OFP	- Open frame porch	Mp	- Map
OMP	- Open masonry porch	Par	- Parcel
EFP	- Enclosed frame porch	Pg	- Page
EMP	- Enclosed masonry porch	Prop	- Property
F GAR	- Frame garage	R 75'	- Rear frontage of 75 feet
M GAR	- Masonry garage	Rd	- Road
CPT	- Carport	R. O. W.	- Right-of-way
WD DK	- Wood deck	Rtg No	- Routing number
CNPY	- Canopy	St	- Street
MP	- Masonry (concrete) patio	Swr	- Sewer
FSP	- Flagstone patio	Till	- Tillable
MS	- Masonry stoop	Topo	- Topography
MT	- Masonry terrace	Twn	- Town
		Twp	- Township
LAND AND	LEGAL DESCRIPTIONS	UD	- Undeveloped
Ac	- Acre	UI	- Unimproved
Acg	- Acreage	UtI	- Utility
Act Frt	- Actual frontage	Vill	- Village
175'	- 175-foot average	Wd Lnd	- Woodland
Bk	- Book	Wtr	- Water
CI	- Corner influence	XF	- Excessive frontage
Calc Acg	- Calculated acreage	XD	- Excessive Depth
Dist	- District	Zng	- Zoning

		$<$	- Is less than	
MEASUREMENTS AND SYMBOLS		π	Pi (3.1416)	
Ac	- Acre	∞	- Infinity	
Acg	- Acreage	@	- At, e.g., 10 lb . @ \$1.00/lb	
Bd Ft	- Board Feet	\\|	- Parallel	
BDP	- Barrels per day			
Brl	- Barrels	\square	- Angle	
BTU	- British thermal unit	\square	- Angles	
Bu	- Bushel	-	- Channel	
Cap	- Capacity	[- Channels	
C/F or$\mathrm{Cu} / \mathrm{Ft}$		1	- Per, e.g., price/lb.	
		ARCHITECTURAL		
Dia	- Diameter	Apt	- Apartment	
Ea	- Each	Art	- Artificial	
Ft	- Foot, feet	Asb	- Asbestos	
Ga	- Gauge	Att	- Attached	
Gal	- Gallon	BIdg	- Building	
GDP	- Gallons per day	Bsmt	- Basement	
Ht	- Height	Bt Pav	- Black top paving	
Lb	- Pound	CB	- Concrete block	
L/F or		Clg	- Ceiling	
Lin Ft	- Lineal feet	Cmt	- Cement	
No	- Number	Col	- Column	
o.c.	- On Center	Com	- Common	
S/F or		Comp	- Composition	
31^{6}	- 31 feet, 6 inches	Conc	- Concrete	
YD	- Yard	Const	- Construction	
中		Dbl	- Double	
	- Square feet	DH	- Double hung	
\square	- Cubic feet	Dk	- Deck	
\underline{s}	- Story	Dkg	- Decking	
\# (xx)	- Number	Drs	- Doors	
(xx) \#	- Pounds	DP	- Double pitch	
-	- Degree	D\&M	- Dressed and matched	
,	- Feet (or minutes)	Dwg	- Dwelling	
"	- Inches (or seconds)	Elec	- Electric	
+	- Plus	Elev	- Elevators	
-	- Minus	Equip	- Equipment	
\pm	- Plus or Minus	Excav	- Excavation	
x	- Times or by	Excl	- Excluding	
$=$	- Equals	Ext	- Exterior	
>	- Is greater than	Fibr Gls	- Fiberglass	

Fin	- Finish
Fixt	- Fixtures
Flr	- Floor
Flrg	- Flooring
Ftg	- Footing
Fdtn	- Foundation
Fr	- Frame
Frt	- Freight
Galv	- Galvanized
GI	- Galvanized iron
Gar	- Garage
Gls DK	- Glass
HCol	- H column
Hd Wd	- Hardwood
Htr	- Heater
Htg	- Heating
HT	- Hollow tile
Horiz	- Horizontal
HP	- Horsepower
Hse	- House
I Bm	- I beam
Incl	- Including
I.D.	- Inside diameter or indentification
Int	- Interior
Int Fin	- Interior finish
I-Com	- Intercom system
Jst	- J oist
K \& T	- Knob and tube
Lam	- Laminated
Ldg	- Landing
L \& P	- Lath and plaster
Lav	- Lavatory
L \& O	- Lead and oil
Lt	- Light
Ltg	- Lighting
Lts	- Lights
Linol	- Linoleum
Mach	- Machine
Mas	- Masonry
Mech	- Mechanical
MF	- Mechanical features

Met	- Metal
Mezz	- Mezzanine
Misc	- Miscellaneous
Mono	- Monolithic
Obsol	- Obsolete, obsolescence
Ofc	- Office
o.c.	- On center
1 E	- One end
1 S	- One side
OF	- Other features
OD	- Overhead or overhang
OH	- Overhead or overhang
Pnt	- Paint
Par	- Parapet
Pt	- Part
PW	- Partition
PW	- Party wall
Pass	- Passenger
Pav	- Paving
Pil	- Pilaster
Plk	- Plaster
Plstr	- Plaster
Plstrd	- Plastered
Plbg	- Plumbing
Pch	- Porch
Purl	- Purlin
Rec Room	- Recreation room
Rftr	- Rafter
RR	- Railroad
Refrig	- Refrigerated
Rein	- Reinforced
Rein Conc	- Reinforced concrete
Ret WI	- Retaining wall
Rf	- Roof
Rfg	- Roofing
Rm	- Room
Shtg	- Sheathing
Sdg	- Siding
SP	- Single pitch
SS	- Slop sinks
Sprink	- Sprinkler

Sq	- Square	Assmt	- Assessment
Strs	- Stairs	Av	- Average
Std	- Standard	CDU	- Condition, desirability, usefulness
Stdg	- Standing	C \& D	- Cost and design
Stm	- Steam	Comm	- Commercial
StI	- Steel	Depr	- Depreciation
StI PI	- Steel plate	EDP	- Electronic data processing
Stge	- Storage	Est	- Estimate(d)
Sup	- Supports	Est	- Estimate(d)
Sys	- System	Ex	- Exempt
T \& G	Tar and gravel or tongue and	Excl	- Excluding
	- groove	Gr	- Grade
Terr	- Terrace	I \& E	- Income and expense
Tbr	- Timber	Incl	- Including
Toil	- Toilet	Ind	- Industrial
TR	- Toilet room	LDS	- Live data system
Unfin	- Unfinished		Live data system
Urin	- Urinal	N/A	- Not applicable
Ven	- Veneer	N/C	- New construction
Vent	- Ventilator	NF	- Nothing furnished
Vit	- Vitrified	NV	- No value
VT	- Vitrified tile	Obsol	- Obsolete or obsolescence
Wsct	- Wainscot	PIF	- Priced in field
Whse	- Warehouse	PRC	- Property record card
w c	- Water closet	PU	- Public utility
WP	- White pine	RC	- Replacement cost
WF	- Wide flange	RCLD	- Replacement cost less depreciation
Wind	- Window	Res	- Residential
Wir	- Wiring	RV	- Replacement value
Wd	- Wood	Sched	- Sched
Wb Fp	- Wood-burning fireplace	SV	
Yd	- Yard	SV	- Sound value
YP	- Yellow pine	T or Tot	- Total
		UF	- Utilities furnished
GENERAL		Utl Val	- Utility value
Agr	- Agriculture	Val	- Value

Apartment hotel, a building designed for nontransient residential use, divided into dwelling units similar to an apartment house, but having such hotel accommodations as room furnishings, lounges, public dining room, maid service, etc.

Apartment house, a multifamily residence containing three or more nontransient residential living units and generally providing them with a number of common facilities and services. Compare Tenement, Flat, Terrace.

Attic, an unfinished or semifinished portion of a building lying between the highest finished story and the roof and wholly within the roof framing.

Basement, a building story which is wholly or partly below the grade level.

Bay, (1) a horizontal area division of a building, usually defined as the space between columns or division walls; (2) an internal recess formed by causing a wall to project beyond its general line.

Bay window, a window or group of continuous windows projecting from the main wall of a builing.

Beam, a long structural load-bearing member which is placed horizontally or nearly so and which is supported at both ends or, infrequently, at intervals along its length.

Beam, spandrel, a wall beam supporting the wall above, as well as the floor.

Building, any structure partially or wholly above ground which is designed to afford shelter to persons, animals or goods.

Building, fireproof, a building in which all parts carrying loads or resisting stresses and all exterior and interior walls, floors and staircases are made of incombustible materials and in which all metallic structural members are encased in materials which remain rigid at the highest probable temperature in case its contents are burned or which provide ample insulation from such a temperature.

Building, loft, a building having three ormore stories, with few or no interior bearing walls and d signed for storage, wholesaling or light industrial purposes. See also Loft.

Building, single-purpose, a building designed for a specific purpose and which cannot be used for another purpose without substantial alterations, e.g., a theater or church.

Bungalow, a one-story dwelling unit which is somewhat more pretentious than a cottage.

Column, a structurally isolated vertical member which is at least 8 to 10 times as long as its least lateral dimension and which is designed to carry loads. Compare Pier.

Conduit, a tube, pipe or small artificial tunnel used to enclose wires or pipes or to convey water or other fluids.

Construction, brick, a type of construction in which the exterior walls are bearing walls (q.v.) made of solid brick and tile masonry.

Construction, brick veneer, a type of construction in which the exterior walls are one-layer brick curtain walls backed by a wood frame.

Construction, fireproof, see Building, fireproof.
Construction, mill, a type of construction in which the exterior walls are substantial masonry bearing walls, in which the structuralmembers are of heavy timber, and which is further characterized by an open design and by other safeguards against fire hazards. Sometimes called Slow Burning Construction.

Construction, reinforced concrete, a type of construction in which the principal structural members, such as the floors, columns, etc., are made of concrete poured around isolated steel bars or steel meshwork in such amanner that the two materials act together in resisting forces.

Construction, steel frame, a type of construction in which a framework of steel structural members supports all loads and resists all stresses.

Construction, wood frame, a type of construction in which a framework of wooden structural members supports all loads and resists all stresses. Loosely called Frame Construction.

Coping, a special capping at the top of a wall, serving principally as a watershed.

Cornice, a projecting element at the top of a wall, serving principally as a decoration or as part of the coping.

Cottage, a one-story to two-story dwelling unit of small size and humble character.

Course, a uniformhorizontal layer of brick, stone, terra cotta, shingles, or some other structural material, extending continuously around a building or along a wall.

Court, an open space bordered on two or more sides by the walls of a single building, or of two or more buildings, and by a lot line or a yard on any side not so bordered.

Dormer, (1) a relatively small structure projecting from a sloping roof; (2) a window set upright in the face of such a structure.

Dwelling, any building or portion thereof designed or occupied in whole or in part as a place of residence.

Dwelling, attached, a multi-family dwelling in which the dwelling units are separated vertically by means of common or party walls. See also Terrace.

Dwelling, double, a two-family dwelling in which the dwelling units are separated vertically by means of a common or party wall. Synonymous with Semidetached dwelling.

Dwelling, duplex, a two-family dwelling in which the two dwelling units are separated horizontally, with a private street entrance for each; i.e., a two-family flat.

Dwelling, multi-family, a building designed as a place of residence for more than two families or households;e.g., an apartmenthouse ortenement.

Dwelling, row, any one of a series of similar singlefamily, two-family or multi-family dwellings having one or more contiguous, common, or party walls. Compare Terrace; Dwelling, double.

Dwelling unit, any room or group of rooms designed as the living quarters of one family or household, equipped with cooking and toilet facilities, and having an independent entrance from a public hall or from the outside.

Eaves, the portion of a sloping roof which projects beyond the outside walls of a building.

Elevation, a drawing representing a projection of any one of the vertical sides or vertical crosssections of a building or of any other object. Compare Plan.

Facade, the face of a building.

Firewall, a wall of fire-resisting material erected between two parts of a building to prevent the spread of fire from one part to the other.

Flashing, small metal strips used to keep roofs from leaking around chimneys, dormers, hips and valleys.

Flat, (1) any one floor of a building two or more stories high, each floor of which constitutes a single dwelling unit and has a private street entrance; (2) the building containing two or more such floors. Compare Apartment house, Tenement, Terrace.

Footing, a spreading base to a wall, column or other supporting member, which serves to widen the ground area to which struc- tural loads are transmitted.

Foundation, the structural members below grade level, or below the first tier of beams above grade level, which transmit the load of a superstructure to the ground.

Gable, (1) the triangular portion of a wall between the slopes of a double-sloping (i.e., ga- ble) roof; (2) the whole of the wall containing such a triangular portion; (3) a portion of a building extending from the remainder of the building and covered with a gable roof.

Girder, a large or principal beam (q.v.) used to support concentrated loads at isolated points along its length. Girders usually support the beams and structure above. Compare Truss.

Header, (1) a structuralmember which is laid perpendicularly to a parallel series of similar members and against which the lattermembers abut; (2) a brick or other piece of masonry which is laid in a wall in such a manner that its longest dimension extends along the thickness of the wall. Contrast Stretcher.

Hip, (1) a sloping line along which two roof surfaces meet to form an external angle of more than 180 degrees; (2) a hip rafter (q.v.). Compare Ridge; Valley.

Hotel, a building designed for transient or semitransient residential use, divided into furnished single rooms and suites and having such accommodations as lounges, public dining rooms and maid service, etc.

Hotel, apartment, see Apartment hotel.

Joist, one of a series of small parallel beams laid on edge and used to support floor and ceiling loads, and usually supported in turn by larger beams and girders.

Lintel, a beam over a wall opening, such as a door or window, designed to carry the load of the wall over such an opening.

Loft, an unpartitioned or relatively unpartitioned upper story of a building, designed for storage, wholesaling or light manufacturing. See also Building, loft.

Louver (or louvre), a ventilator containing slats which are placed lengthwise across the ventilator opening, each slat being slanted in such a manner as to overlap the next lower slat and to permit ventilation but exclude rain.

Marquise, a flat roof-like structure which shelters a doorway; it has no floor beneath it and is usually supported wholly from the walls or the building.

Mezzanine, low story formed by placing a floor between what would ordinarily be the floor and ceiling of a high story. Note: themezzanine floor frequently has a smaller area than other floors and, if present at all, is usually between the first and second stories.

Millwork, all of the wooden portions of a building, whether frame construction or otherwise, which are customarily purchased in finished formfrom a planingmill, such as doors,windows, trim, balusters, etc.

Overhang, a finished portion of a building, having full-story height and extending beyond the foundation wall line if part of the ground story, or beyond the exterior walls of the ground story if part of any higher story.

Overhead structure, similar to overhang above a ground story, as O.H. bridge or passage, O.H. walk, O.H. addition.

Partition, see Wall, partition.

Pier, (1) a thick, solid mass of masonry which is fully or partially isolated froma structural standpoint and which is designed to transmit vertical loads to the earth; (2) a structure projecting from land into water for use in loading and unloading vessels. Compare Column.

Pilaster, a flat-faced pillar projecting somewhat from, but engaged in, the wall of a building and used for decorative purposes or to help support truss and girder loads or both.

Pile, a heavy timber, metallic or masonry pillar forced into the earth to forma foundation member.

Pitch, the slope of any structuralmember, such as a roof or rafter, usually expressed as a simple fraction representing the rise per lateral foot.

Plan, a drawing representing a projection of any one of the floors or horizontal cross-sections of a building or of the horizontal plane of any other object or area. Compare Elevation.

Purlin, a beam running along the underside of a sloping roof surface and at right angles to the rafters, used to support the common rafters, and usually supported in turn by larger structural members, such as trusses or girders (usually runs along length of building). See also Rafter.

Rafter, a structural member placed, as a rule, in a sloping position and used as the supporting element for the structural material forming the plane of the roof. See also Purlin.

Rafter, hip, a rafter placed in an inclined position to support the edges of two sloping roof surfaces which meet to forman external angle of less than 180 degrees.

Rafter, valley, a rafter placed in an inclined position to supportthe edges of two sloping roofsurfaces which meet to form an external angle of less than 180 degrees.

Ramp, an inclined plane connecting two different floor levels and used in lieu of steps.

Residence, see Dwelling.

Ridge, a horizontal line along which the upper edges of two roof surfaces meet to form an external angle of more than 180 degrees. Compare Hip; Valley.

Rise, (1) in general, any vertical distance; (2) specifically, the rise of a roof, being the distance between the top of an exterior wall and the peak of the roof; the rise of a stair, being the distance from tread to tread.

Roof, curb (or curbed), a roof in which the pitch of the upper part of a sloping side is less than the pitch of the lower part.

Roof, flat, a roof which is flat or sloped only enough to provide proper drainage.

Roof, gable, a double-sloped roof having a cross section similar to the shape of the inverted letter V.

Roof, gambrel, a curbed gable roof.
Roof, hip (or hipped), (1) in general, any roof having one or more hips; (2) usually, a roof with four sloping sides meeting along four hips or along four hips and a ridge. Compare Roof, pyramid.

Roof, lean-to, (1) a roof having a single sloping side which is supported at the upper edge by the wall of an attached building or of a larger and higher portion of the same building; (2) any roof with a single slope.

Roof, mansard, a special type of curb roof in which the pitch of the upper part of each of the four equally sloping sides is small or negligible and that of the lower part very great, and from the lower part of which a series of dormers project.

Roof, monitor, a type of gable roof, commonly found on industrial buildings, having a small raised portion along the ridge with openings for the admission of light and air.

Roof, pyramid, a hip roof having four sloping triangular sides, usually of equal pitch, meeting together at the peak. Compare Roof, hip.

Roof, ridges, a roof having one or more ridges (q.v.).

Roof, saw tooth, a roofwith a series of parallel sloping surfaces interspersed between a series of vertical surfaceswhich rise from the lower edges of such sloping surfaces and which contain windows for the admission of light and air.

Roof, single pitch, any roof (other than a lean-to roof) with a single slope.

Sash, the wooden or metal framework in which the glass of a door or window is set.

Sheathing, the covering, usually of rough lumber, placed immediately over studding or rafters.

Sill, (1) the lower horizontal part of a door-case (the threshold) or of a window; (2) the lowest horizontal structural member of a frame building, upon which the superstructure is supported.

Sleeper, a structural member laid horizontally on the ground or upon amasonry base as a support to a floor or other superstructures.

Specifications, detailed descriptions of the dimensions, materials, quantities, structural procedures, etc., applicable to projected or completed pieces of construction.

Story, that portion of a building enclosed by a floor, a ceiling and the exterior walls.

Story, ground, the first story lying wholly above the ground level. Synonymous with First Story.

Story, half (or one-half), (1) for buildings with a mansard or gambrel roof, a finished portion of a building which lies above the wall plate or cornice and which has a usable floor area substantially less than that of the next lower story; (2) for all other buildings, a finished portion of a building which is above one or more full stories and which is wholly or partly within the roof frame and which has one or more exterior walls substantially lower than the full height of the story.

Story, one, a building having no finished story above the ground story.

Stretcher, a brick or other piece of masonry which is laid lengthwise in a wall. Contrast Header.

Strut, any structural member which holds apart two or more other members by counteracting a pressure tending to bring them together. Contrast Tie.

Stud, one of a series of small slender structural members placed vertically and used as the su porting element of exterior or interior walls.

Subfloor, the flooring laid directly on top of the floor joists but beneath the finish floor.

Tenement, a building, usually of obsolete nature, designed primarily for nontransient residential use and divided into three ormore dwelling units having common stairs, halls and street entrances, and sometimes common bath and toilet rooms. Compare Apartment House; Flat; Terrace.

Terrace, (1) an unroofed level area covered with grass or masonry or both, raised above the su rounding ground level, and having a vertical or sloping front; (2) amultifamily dwelling in which the dwelling units are separated vertically by means of common or party walls. Compare Dwelling, row; Dwelling, double; Apartment house; Flat; Tenement.

Terra cotta, a hard-baked pottery molded into decorative tiles, bricks, etc., and used particularly for facing and trim on buildings.

Tie, any structural member which binds together two or more members by counteracting a stress which tends to draw them apart. Contrast Strut.

Trim, (1) the wooden portions of a plastered room, such as the doors, windows, wainscoting and molding, or the corresponding portions of a room finished with amaterial other than plaster; (2) the contrasting elements on the exterior of a building which serve no structural purpose but are intended to enhance its appearance; e.g., the cornice; (3) occasionally, the hardware of a house, such as locks, hinges, doorknobs, etc.

Truss, a combination of structural pieces fastened together into a rigid open member which is su ported at both ends and upon which loads are superimposed. Compare Girder.

Valley, a sloping line alongwhich two roof surfaces meet to form an external angle of less than 180 degrees. Compare Hip, Ridge.

Veneer, a thin ornamental or protective facing which does not add appreciably to the strength of the body to which it is attached.

Wainscot (or wainscoting), (1) a wooden facing on the lower portion of a contrasting interior wall; (2) by extension, a facing ofmarble tile, or the like, on the lower portion of interior walls.

Wall, bearing, a wall designed primarily to withstand vertical pressure in addition to its own weight.

Wall, common, a wall owned by one party but jointly used by two parties, one or both of whom is entitled to such use under the provisions of a lease.

Wall, curtain, a non-bearing wall which is supported by columns, beams or other structural members, and whose primary function is to e close space.

Wall fire, see Firewall.

Wall, partition, an interior bearing or nonbearing wall which separates portions of a story. Synonmous with Partition.

Wall, party, a wall jointly used by two parties under easement agreement and erected at or upon a line separating two parcels of land held under different ownership.

Wall, retaining, a wall designed primarily to withstand lateral pressures of earth or other filling or backing deposited behind it after construction.

Window, bay, see Bay Window.

Window, dormer, see Dormer.

Wing, a subordinate part of a building extending from the main part, or any one of two or more substantially coordinate parts of a building which extend out from one or more common junctions.

Abstract, a computer-printed report of appraised and/or assessed values for each parcel of real property in a given taxing district; generally sequenced geographically.

Accrued depreciation, see Depreciation.

Actual age, the number of years elapsed since the original construction, as of the effective valuation date. Compare Effective age.

Ad valorem tax, in reference to property, a tax based upon the value of the property.

Aesthetic value, a value, intangible in nature, which is attributable to the pleasing appearance of a property.

Agricultural property, land and improvements devoted to or best adaptable for the production of crops, fruits and timber and the raising of livestock.

Air rights, the right to the use of a certain specified space within the boundaries of a parcel of land and above a specified elevation.

Alley influence, the enhancement to the value of a property rising out of the presence of an abutting alley; generally applicable to commercial properties.

Amenities, in reference to property, the intangible benefits arising out of ownership; amenity value refers to the enhancement of value attributable to such amenities.

Appraisal, an estimate, usually in written form, of the value of a specifically described property as of a specified date; may be used synonymously with valuation or appraised value.

Appraisal schedules, any standardized schedules and tables used in conjunction with a revaluation program such as replacement cost pricing schedules, depreciation tables, land depth tables, etc.

Appraised value, see Appraisal.
Appraiser, one who estimates value. More specifically, one who possesses the expertise to execute or direct the execution of an appraisal.

Assessed value, see Assessment.
Assessing, the act of valuing a property for the purpose of establishing a tax base.

Assessment, the value of taxable property to which the tax rate is to be applied in order to compute the amount of taxes;may be used synonmously with assessed value, taxable value and tax base.

Assessment district, an assessor's jurisdiction; it may or may not be an entire tax district.

Assessment period, the period of time during which the assessment of all properties within a given assessment district must be completed; the period between tax lien dates.

Assessment ratio, the ratio of assessed value to a particular standard of value, generally the appraised value. A percentage to be applied to the appraised value in order to derive the assessed value.

Assessment roll, the official listing of all properties within a given taxing jurisdiction by ownership, description and location, showing the corresponding assessed values for each; also referred to as tax list, tax book, tax duplicate and tax roll.

Assessor, the administrator charged with the assessment of property for ad valorem taxes; his precise duties differ from state to state depending upon state statutes.

Average deviation, in a distribution of values, the average amount of deviation of all the values from the mean value, equal to the total amount of deviation from the mean divided by the number of deviations. As applied to an assessmenttosale ratio distribution, the average amount which all the ratioswithin the distribution deviate from the mean ratio.

Base price, a value or unit rate established for a certain specified model, and subject to adjustments to account for variations between that particular model and the subject property under appraisement.

Blighted area, a declining area characterized by marked structural deterioration and/ or enviromental deficiencies.

Board of Equalization, a nonjurisdictional board charged with the responsibility of reviewing assessments across properties and taxing districts to ensure that said properties and districts are assessed at a uniformlevel, either raising or lowering assessments accordingly; also referred to as the Board of Appeals and Board of Review.

Building residual technique, a building valuation technique which requires the value of the land to be a known factor; the value of the buildings can then be indicated by capitalizing the residual net income remaining after deducting the portion attributable to the land.

Capitalization, a mathematical procedure for converting the net income which a property is capable of producing into an indication of its current value. See also Income approach.

CDU rating, a composite rating of the overall condition, desirability and usefulness of a structure as developed by the Cole-Layer-Trumble Company and used nationally as a simple, direct and uniform method of estimating accrued depreciation.

Central business district, the center of the city in which the primary commercial, governmental and recreational activities are concentrated.

Certified assessment evaluator, a professional designation (CAE) conferred by the International Association of Assessing Officers (IAAO) upon qualifying assessors.

Certified property tax, an ad valoremproperty tax under which the assessment ratio varies for different property classes.

Component part-in-place method, the application of the unit-in-place method to unit groupings or construction components. See also Unit-in place method.

Corner influence, the enhancement of the value of a property, rising out of its corner location; most generally applicable to commercial properties.

Cost approach, one of the three traditional aproaches to value, under which an indication of the value of a property is arrived at by estimating the value of the land, the replacement or reproduction cost new of the improvements and the amount of accrued depreciation to the improvements; the estimated land value is then added to the estimated depreciated value of the improvements to arrive at the estimated property value. Also referred to as the cost-to-market approach to indicate that the value estimates are derived from market data abstraction and analysis.

Cost factor, a factor or multiplier applied to replacement or reproduction costs to account for variations in location and time, aswell as for other elements of construction costs not otherwise considered.

Cubic content, the cubic volume of a building within the outer surface of the exterior walls and roof and the upper surface of the lowest floor.

Deed, a written instrument which conveys an interest in real property. A quit claim deed conveys the interest described therein without warranty of title. A trust deed conveys interest described there in to a trustee. A warranty deed conveys the interest described therein with the provisions that the freehold is guaranteed by the grantor, his heirs or successors.

Depreciation, loss in value from all causes; may be further classified as physical, referring to the loss of value caused by physical deterioration; functional, referring to the loss of value caused by obsolescence inherent in the property itself; and economic, referring to the loss of value caused by factors extraneous to the property.

Accrued depreciation refers to actual depreciation in a particular property as of a specified date.

Normal depreciation refers to that amount of accrued depreciation one would normally expect to find in buildings of certain construction, design, quality and age.

Depreciation allowance, loss of value expressed in terms of a percentage of replacement or reproduction cost new.

Depth factor, a factor ormultiplier applied to a unit of land value to adjust that value to account for variations from an adopted standard depth.

Depth table, a table of depth factors.

Design factor, a factor or multiplier applied to a computed replacement cost as an adjustment to account for cost variations attributable to the particular design of the subject property which were not accounted for in the particular pricing schedule used.

Deterioration, impairment of structural condition evidenced by thewear and tear caused by physical use and the action of the elements; also referred to as physical depreciation.

Economic depreciation, see Depreciation.

Economic life, the life expectancy of a property, during which it can be expected to be profitably utilized.

Economic obsolescence, obsolescence caused by factors extraneous to the property. Also referred to as economic depreciation.

Economic rent, the rent which a property can be expected to bring in the open market, as opposed to contract rent or the rent the property is actually realizing at a given time.

Effective age, an age assigned to a structure based upon its condition as of the effective valuation date; it may be greater or less than the structure's actual age. Compare Actual age.

Effective depth, in reference to property valuation, that depth, expressed in feet, upon which the selection of the depth factor is based.

Effective frontage, in reference to property valuation, the total frontage, expressed in lineal feet, to which the unit land value is applied; it may or may not be the same as the actual frontage.

Effective gross income, the estimated gross income of a property, less an appropriate allowance for vacancies and credit losses.

Effective valuation date, in reference to a revaluation program, the date as of which the value estimate is applicable.

Encroachment, the displacement of an existing use by another use.

Environmental deficiency, a neighborhood condition such as adverse land uses, congestion, poorly designed streets, etc., operating to cause economical obsolescence and, when coupled with excessive structural deterioration, blight.

Equalization program, a mass appraisal (or reappraisal) of all property within a given taxing jurisdictionwith the goal of equalizing values in order to ensure that each taxpayer is bearing only his fair share of the tax load;may be used synonymously with a revaluation program.

Equity, in reference to property taxes, a condition in which the tax load is distributed fairly or equitably; opposite of inequity, which refers to a condition characterized by an unfair or inequitable distribution of the tax burden. Inequity is a natural product of changing economic conditions which can only be effectively cured by periodical equalization programs.

In reference to value, it is that value of the property remaining after all liens and charges against it are deducted

Excessive frontage, frontage which, because of the particular utility of the lot, does not serve to add value to the lot.

Exempt property, see Tax exemption.

Fee appraisal, see Mass appraisal.

Field crew, the total professional staff assigned to a specific appraisal project, including data collectors, reviewers, staff appraisers and clerical and administrative supporting personnel.

Functional depreciation, see Depreciation.

Functional obsolescence, obsolescence caused by factors inherent in the property itself. Also referred to as functional depreciation.

Functional utility, the composite effect of a property's usefulness and desirability upon its market ability.

Grade, the classification of an improvement based upon certain construction specifications and quality of materials and workmanship.

Grade factor, a factor or multiplier applied to a base grade level for the purpose of interpolating between grades or establishing an intermediate grade.

Grantee, a person to whom property is transferred and property rights are granted by deed, trust instrument or other similar documents. Compare with G rantor.

Grantor, a person who transfers property or grants property rights by deed, trust instrument or other similar documents. Compare with Grantee .

Gross area, the total floor area of a building, measured from the exterior of the walls.

Gross income, the scheduled annual income produced by the operation of a business or by the property itself.

Gross incomemultiplier, amultiplier representing the relationship between the gross income of a property and its estimated value.

Gross sales, the total amount of invoiced sales before making any deductions for returns, allowances, etc.

Ground lease, a document entitling the lessee to certain specified rights relating to the use of the land.

Ground rent, net rent from a ground lease; that portion of the total rent which is attributable to the land only.

Improved land, land developed for use by the erection of buildings and other improvements.

Income approach, one of the three traditional approaches to value, which measures the present worth of the future benefits of a property by the capitalization of its net income stream over its remaining economic life. The approach involves making an estimate of the potential net income the propertymay be expected to yield, and capitalizing that income into an indication of value. See also Capitalization.

Income property, a property primarily used to produce monetary income.

Industrial park, a subdivision designed and developed to accommodate specific types of industry.

Industrial property, land and improvements, and/ or machinery used or adaptable for use in the production of goods either for materials, or by changing other materials and products . . . i.e., assembling, processing and manufacturing ... as well as the supporting auxiliary facilities thereof.

Inequity, see equity.
Influence factor, a factor serving to either devalue or enhance the value of a particular parcel of land, or portions thereof, relative to the norm for which the base unit values were established; generally expressed in terms of a percentage adjustment.

Institutional property, land and improvements used in conjunction with providing public services and generally owned and operated by the govern-mentornonprofitorganizations-hospitals, schools, prisons, etc. Such property is generally held exempt from paying property taxes.

Interest rate, the rate of return from an investment.

Land classification, the classification of land based upon its capabilities for use and/or production.

Land contract, a purchase contract wherein the grantee takes possession of the property with the grantor retaining the deed to the property until the terms of the contract are met as specified.

Land residual technique, land valuation technique which requires the value of the building(s) to be known; the value of the land can then be indicated by capitalizing the residual net income remaining after deducting the portion attributable to the building(s).

Landscaping, natural features such as lawns, shrubs and trees added to a plot of ground or modified in such a way as to make it more attractive.

Land use restrictions, legal restrictions regulating the use to which land may be put.

Land value maps, a map used in conjunction with mass appraising, generally drawn to small scale and showing comparative unit land values, on a block to block basis.

Lease, lessee, lessor, a written contract by which one party (lessor) gives to another party (lessee) the possession and use of a specified property, for a specified time, and under specified terms and conditions.

Leasehold, a property held under the terms of a lease.

Leasehold improvements, additions, renovation and similar improvements made to a leased property by the lessee.

Leasehold value, the value of a leasehold; the di ference between the contractual rent and the cu rently established economic or market rent.

Legal description, a description of a parcel of land, which serves to identify the parcel in a manner sanctioned by law.

Lister, a field inspector whose principal duty is to collect and record property data (not an appraiser). Also referred to as a data collector.

Market data approach, one of the three traditional approaches to value, by which an indication of the value of a property is arrived at by compiling data on recently sold properties which are comparable to the subject property and adjusting their selling prices to account for variations in time, location and property characteristics between the comparables and the subject property.

Market value, the price an informed and intelligent buyer, fully aware of the existence of competing properties and not compelled to act would be justified in paying for a particular property.

Mass appraisal, appraisal of property on a wholesale scale, such as an entire community, generally for ad valorem tax purposes, using standardized appraisal techniques and procedures to effect uniform equitable valuations within a minimum of detail andwithin a limited time period and at a limited cost . . . as opposed to a fee appraisal, which is generally used to refer to a rather extensive detailed appraisal of a single property or singularly used properties for a specified purpose.

Member, Appraisal Institute, a professional designation (M.A.I.) conferred by the American Institute of Real Estate Appraisers upon qualifying real es tate appraisers.

Mineral rights, the right to extract subterranean deposits such as oil, gas, coal and minerals as specified in the grant.

Minimum rental, that portion of the rent in a percentage lease which is fixed.

Model method, a method of computing the replacement or the reproduction cost of an improvement by applying the cost of a specified model and adjusting the cost to account for specified variations between the subject improvement and the model.

Modernization, the corrective action taken to update a property so that it will conform to current standards.

Mortgage, mortgagee, mortgagor, a legal document by which the owner of a property (mortgagor) pledges the property to a creditor (mortgagee) as security for the payment of a debt.

Neighborhood, a geographical area exhibiting a high degree of homogeneity in residential amenities, land use, economic and social trends and housing characteristics.

Neighborhood trend, three stages in the life cycle of a neighborhood . . .the improving stage, characterized by development and growth; the static stage, characterized by a leveling off of values; and the declining stage, characterized by infiltration and decay.

Net income, the income remaining from the effective gross income after deducting all operating expenses related to the cost of ownership.

Net lease, a lease wherein the lessee assumes all applicable operating expenses related to the cost of ownership; also referred to as net net, or net net net lease.

Net sales, gross sales less returns and allowances.

Net sales area, the actual floor area used forme chandising, excluding storage rooms, utility and equipment rooms, etc.

Non-conforming use, a use which, because of modified or new zoning ordinances, no longer conforms to current use regulations, but which is nevertheless upheld to be legal so long as certain conditions are adhered to.

Observed depreciation, that loss in value which is discernable through physical observation by comparing the subject property with a comparable property either new or capable of rendering maximum utility.

Obsolescence, a diminishing of a property's desirability and usefulness brought about by either functional inadequacies and overadequacies inherent in the property itself, or by adverse economic factors external to the property. Refer to Functional depreciation and Economic depreciation.

Operating expenses, the fixed expenses, operating costs and reserves for replacements which are required to produce netincome before depreciation, and which are to be deducted from effective gross income in order to arrive at net income.

Overage income, rental received in addition to the minimum contract rental based upon a specified percentage of a tenant's business receipts.

Overall rate, a capitalization rate representing the relationship of the net income (before recapture) of a property to its value as a single rate; it necessarily contains, in their proper proportions, the elements of both the land and building capitalization rates.

Overassessed, a condition wherein a property is assessed proportionately higher than comparable properties.

Parcel, piece of land held in one ownership.

Percentage lease, a type of lease in which the rental is stipulated to be a percentage of the tenant's gross or net sales, whichever specified.

Permanent parcel number, an identification number, which is assigned to a parcel of land to uniquely distinguish that parcel from any other parcel within a given taxing jurisdiction.

Personal property, property which is not permanently affixed to and a part of the real estate, as specified by state statutes.

Physical depreciation, see Depreciation.

Preferential assessment, an assessing system which provides preferential treatment in the form of reduced rates to a particular class of property, such as a system providing for farm properties to be assessed in accordance with their value in use as opposed to their value in the open market.

Property class, a division of like properties generally defined by statutes and generally based upon their present use. The basis for establishing assessment ratios in a classified property assessment system. See Classified property tax.

Property inspection, a physical inspection of a property for the purpose of collecting and/ or reviewing property data.

Property record card, a document specially designated to record and process specified property data; may serve as a source document, a processing form and/or a permanent property record.

Public utility property, property devoted to the production of commodities or services for public consumption under the control of governmental agencies such as the Public Utility Commission.

Quantity survey method, a method of computing the replacement or the reproduction cost of an improvement by applying unit costs to the actual or estimatedmaterial and labor quantities and adding an allowance for overhead, profit and all other indirect construction costs.

Real estate, the physical land and appurtenances affixed there to; often used synonymously with real property.

Real property, all the interests, benefits and rights enjoyed by the ownership of the real estate.

Reassessment, the revaluation of all properties within a given jurisdiction for the purpose of establishing a new tax base.

Rent, the amount paid for the use of a capital good. See Economic rent.

Replacement cost, the current cost of reproducing an improvement of utility equal to the subject property; it may or may not be the cost of reproducing a replica property. Compare with Reproduction cost.

Reproduction cost, the current cost of reproducing a replica property. Compare with Replacement cost.

Reserve for replacements, a reserve established to cover renewal and replacements of fixed assets.

Residential property, vacant or improved land devoted to or available for use primarily as a place to live.

Revaluation program, see Equalization program.

Sales ratio study, a statistical analysis of the distribution of assessment or appraisal-to-sale ratios of a sample of recent salesmade for the purpose of drawing inferences regarding the entire population of parcels from which the sample was abstracted.

Salvage value, the price one would be justified in paying for an item of property to be removed from the premises and used elsewhere.

Site development costs, all costs incurred in the preparation of a site for use.

Soil productivity, the capacity of a soil to produce crops.

Sound value, the depreciated value of an improvement.

Sound value estimate, an estimate of the depreciated value of an improvement made directly by comparing condition, desirability and usefulness without first estimating its replacement cost new.

Standard depth, that lot depth selected as the norm against which other lots are to be compared; generally the most typical depth.

Sublease, see Lease, the lessee in a prior lease simply becomes a lessor in a sublease.

Tax bill, an itemized statement showing the amount of taxes owed for a certain property described therein and forwardable to the party(s) legally liable for payment thereof.

Tax book, see Assessment roll.
Tax district, a political subdivision over which a governmental unit has authority to levy a tax.

Tax duplicate, see Assessment roll.
Tax exemption, either total or partial freedom from the obligation to pay tax; total exemption is that granted to governmental, education, charitable, religious and similar non-profit organizations, and partial exemption is that granted on homesteads, etc.

Tax levy, in reference to property taxes, the total revenue which is to be realized by the tax.

Tax list, see Assessment roll.

Taxmapping, the creation of accurate representations of property boundary lines at appropriate scales to provide a graphic inventory of parcels for use in accounting, appraising and assessing; such maps show dimensions and the relative size and location of each tract with respect to other tracts.

Tax notice, a written notification to a property owner of the assessed value of certain properties described therein; often a law requires that a tax notice be given to each property owner following a revaluation of his property.

Tax rate, the rate, generally expressed in dollars per hundred or dollars per thousand (mills), which is to be applied against the tax base (assessed value) to compute the amount of tax to be paid. The tax rate is derived by dividing the total amount of the tax levy by the total assessed value of the taxing district.

Tax roll, see Assessment roll.

Tillable land, land suitable for growing annual crops.

Underassessed, a condition wherein a property is assessed proportionately lower than comparable properties.

Uniformity, as applied to assessing, a condition wherein all properties are assessed at the same ratio to market value, or other standard of value depending upon the particular assessing practices followed.

Unimproved land, vacant land; a parcel for which there is no improvement value.

Unit cost or price, the price or cost of one item of a quantity of similar items.

Unit-in-place method, amethod of computing the replacement or reproduction cost of an improvement by applying established unit-inplace rates, developed to include the cost of materials, equipment, labor, overhead and profit, to the various construction units. See also Component part-in-place method.

Use density, the number of buildings in a particular use per unit of area, such as a density of so many apartment units per acre.

Use value, the actual value of a commodity to a specific owner, as opposed to its value in exchange or market value.

Vacancy, an unrented unit of rental property.

Vacant land, unimproved land; a parcel for which there is no improvement.

Valuation, see Appraisal.

View, the prospect as viewed from a property.

Waterfrontage, land abutting a body of water.

Woodland, land which is fairly densely covered with trees.

Zoning regulations, governmental restrictions relating to the use of land.

Aggregate ratio, as applied to real estate, the ratio of the total assessed value to the total selling price.

Average deviation, in a distribution of values, the average amount of deviation of all the values from the mean value, equal to the total amount of deviation from the mean divided by the number of deviations.

Cells, the basic units making up a stratified sample; each sale representing a distinct group within the total universe.

Coefficient, a value prefixed as a multiplier to a variable or an unknown quantity.

Coefficient of dispersion, as applied to an assess-ment-to-sale ratio distribution, ameasure of dispersion in a given distribution equal to the average deviation of the ratios from the mean ratio divided by the mean ratio.

Frequency distribution, a display of the frequency with which each value in a given distribution occurs; or in a grouped frequency distribution, a display of the frequency with which the values within various intervals, or value groupings, occur.

Mean, a measure of central tendency equal to the sum of the values divided by the number. Also referred to as arithmetic average or arithmetic mean.

Median, a measure of central tendency equal to that point in a distribution above which 50% of the values fall and below which 50% of the values fall. The 50th percentile. The 2nd quartile.

Mode, ameasure of central tendency equal to that value occurring most frequently in a given distribtion. In a grouped-frequency distribution, the mode is equal to the midpoint of the interval with the greatest frequency.

Normal distribution, a distribution in which all the values are distributed symmetrically about the mean value, with 68.26% of the values falling between ± 1 standard deviation, 95.44% between ± 2 standard deviations, and 99.74% between ± 3 standard deviations.

Percentile rank, the relative position of a value in a distribution of values expressed in percentage terms; for instance, as applied to an assessment-to-sale ratio distribution, a ratio with a percentile rank of 83 would indicate that 83% of the ratios were lower and 17% of the ratios were higher than that particular ratio.

Precision, as applied to real estate, refers to the closeness of estimated value to actual selling price on an aggregate basis.

Price-related differential, as applied to real estate, an analytical measure of the vertical uniformity of values in a given distribution calculated by dividing the mean ratio by the aggregate ratio; a ratio of more than 1 being generally indicative of the relative undervaluation of high-priced properties as compared to the less valuable properties, whereas a ratio of less than 1 would indicate the converse relationship.

Quartile, positions in a distribution at 20 percentile intervals; the first quartile being equal to the 25th percentile, the second quartile being equal to the 50th percentile or the median, and the third quartile being equal to the 75th percentile.

Regression analysis, a statistical technique for making statements as to the degree of linear association between a criterion (dependent) variable and one or more predicator (independent) variables; a simple linear regression has one ind pendent variable, and multiple linear regression has more than one independent variable.

Range, the difference between the highest and the lowest value in a distribution.

Ratio, a fixed relationship between two similar things expressed in terms of the number of times the first contains the second; the quotient of one quantity d ivided by another quantity of the same type, generally expressed as a fraction.

Sample, as applied to real estate, a set of parcels taken from a given universe, which is used to make inferences about values for that universe.

A probability sampleis a sample in which each parcel in the universe is given equal chance of being included. Also referred to as random sample.

A nonprobability sample is a sample in which each parcel in the universe being chosen by other criteria is not given an equal chance of being included. Essentially all assessment-to-sale ratio studies are nonprobability samples.

Sample size, as applied to real estate, the number of parcels needed from a universe to achieve a desired level of precision, given the total number of parcels in the universe and the standard deviation thereof.

Standard deviation, ameasure of dispersion, varability or scatter of values in a given distribution equal to the square root of the arithmetic mean of the squares of deviations from the mean.

Standard error of the mean, a measure of the statistical variability of the mean equal to the standard deviation of the distribution divided by the square root of the sample size.

Stratified sampling, the selection of sample parcels from distinct groups within the total universe, based upon the known sizes and characteristics of these distinct groups.

Universe, as applied to real estate, all the parcels of a given type in the group under study, i.e., all the parcels of a given neighborhood, district, etc. Also referred to as population.

(A) 1 Story. All rooms are on one foor and are below the mquare of houge at the eqve line. This type usually bas a low pitch roof with a slope of about $5 / 6$.

(D) $11 / 2$ Story. The second floor area of this type in equal to the area of the first floor, however, the wall height of the gecond floor is approximately $1 / 2$ that of the firat floor with the balance of Fafl height as gloping ceiling.

(G) 2 Story. This is a typical 2 story dwelling with the gecond floor area equal to the first lloor area.

(B) 1 Stary and Altic. Same bosic design Es I story except the pitch of the roof is usually greater with a slope of about $1 / 4$ or $1 / 3$. This type deaign has a permanent stairway to a urable floped attic area. There are usually windowg at each end of the attic.

(E) $11 / 2$ Story. This type is similar to the istory and fintshed attic design except the roof pitch is greater with a alope of about $1 / 3$ or $1 / 2$ and there 和 a large dormer on one side of the roof and posaibly one or 2 gimall domers on the oppasite side of the roof. Area of the finished aecond floor is approximately 75% of the firat floor ares.

(H) 2 Story. Similar to the 2 gtory in example (G) except the second floor side walls are less than full height. Consequeptly part of the second foor ceiline follows the slope of the roof.

(C) 1 Story and Finished Mttic. Same bagic desigo as 1 story and attic except the attic interior is finished and is ueually divided into rooms. The attic floor is approximately 50% of the first floor area.

(F) $11 / 2$ Story. This type has a high pitch roof with a alope of about 5/f or 7 Fith gmall dormere on one or both sides of the roof. The area of the fimished becond floor is approximately 75% of the first floor aren.

(i) $21 / 2$ Story. This type has two full atories and a $1 / 2$ rtory similar to example (D). A 21/2 story dimelling may alao be similar in desigr to examples (E) or (F).

HIP

SHED

GAMBREL

FLAT

MANSARD

MOHITOR

ARCHED

SAWTOOTH

100 FEET

Depth	Factor	Depth	Factor	Depth	Factor	Depth	Factor
		50	73	100	100	150	114
1	3	51	74	101	100	151	114
2	5	52	74	102	101	152	115
3	8	53	75	103	101	153	115
4	10	54	76	104	101	154	115
5	13	55	77	105	102	155	115
6	15	56	77	106	102	156	115
7	17	57	78	107	102	157	115
8	20	58	79	108	102	158	116
9	22	59	79	109	103	159	116
10	24	60	80	110	103	160	116
11	26	61	81	111	103	161	116
12	28	62	81	112	104	162	116
13	30	63	82	113	104	163	117
14	32	64	82	114	104	164	117
15	34	65	83	115	105	165	117
16	36	66	84	116	105	166	117
17	38	67	84	117	105	167	117
18	40	68	85	118	105	168	117
19	41	69	85	119	106	169	117
20	43	70	86	120	106	170	118
21	44	71	86	121	106	175	118
22	46	72	87	122	107	180	119
23	47	73	87	123	107	185	120
24	48	74	88	124	107	190	120
25	49	75	88	125	108	195	121
26	50	76	89	126	108	200	121
27	51	77	89	127	108	205	121
28	53	78	90	128	109	210	122
29	54	79	90	129	109	215	122
30	55	80	91	130	109	220	122
31	56	81	92	131	110	225	122
32	57	82	92	132	110	230	123
33	58	83	93	133	110	235	123
34	59	84	93	134	110	240	123
35	60	85	94	135	111	250	124
36	61	86	94	136	111	260	124
37	62	87	94	137	111	270	125
38	63	88	95	138	111	280	125
39	64	89	95	139	112	290	126
40	65	90	96	140	112	300	126
41	66	91	96	141	112	310	127
42	67	92	97	142	112	320	127
43	68	93	97	143	113	330	128
44	68	94	98	144	113	340	128
45	69	95	98	145	113	350	129
46	70	96	98	146	113	360	129
47	71	97	99	147	114	370	130
48	71	98	99	148	114	380	130
49	72	99	100	149	114	390	131

120 FEET

Depth	Factor	Depth	Factor	Depth	Factor	Depth	Factor
		50	64	100	91	150	111
1	3	51	65	101	91	151	112
2	5	52	65	102	92	152	112
3	8	53	66	103	92	153	112
4	10	54	66	104	93	154	112
5	13	55	67	105	93	155	113
6	15	56	68	106	94	156	113
7	17	57	68	107	94	157	113
8	19	58	69	108	95	158	113
9	21	59	69	109	95	159	114
10	24	60	70	110	96	160	114
11	26	61	71	111	96	161	114
12	27	62	71	112	97	162	114
13	29	63	72	113	97	163	115
14	31	64	73	114	97	164	115
15	33	65	73	115	98	165	115
16	35	66	74	116	98	166	115
17	36	67	75	117	99	167	115
18	38	68	75	118	99	168	116
19	40	69	76	119	100	169	116
20	41	70	76	120	100	170	116
21	42	71	77	121	100	175	117
22	43	72	78	122	101	180	118
23	44	73	78	123	101	185	119
24	45	74	79	124	102	190	120
25	46	75	79	125	102	195	121
26	47	76	80	126	103	200	122
27	48	77	80	127	103	205	122
28	48	78	81	128	103	210	123
29	49	79	81	129	104	215	123
30	50	80	82	130	104	220	123
31	51	81	82	131	105	225	123
32	52	82	83	132	105	230	124
33	53	83	83	133	105	235	124
34	53	84	84	134	106	240	124
35	54	85	84	135	106	250	125
36	55	86	85	136	107	260	125
37	56	87	85	137	107	270	125
38	57	88	86	138	107	280	125
39	57	89	86	139	108	290	126
40	58	90	87	140	108	300	126
41	59	91	87	141	108	310	126
42	59	92	87	142	109	320	126
43	60	93	88	143	109	330	127
44	60	94	88	144	109	340	127
45	61	95	89	145	110	350	127
46	62	96	89	146	110	360	127
47	62	97	90	147	110	370	128
48	63	98	90	148	111	380	128
49	63	99	91	149	111	390	12

132 FEET

Depth	Factor	Depth	Factor	Depth	Factor	Depth	Factor
		50	62	100	89	150	106
1	2	51	63	101	89	151	107
2	4	52	63	102	90	152	107
3	6	53	64	103	90	153	107
4	8	54	64	104	90	154	107
5	9	55	65	105	91	155	108
6	11	56	66	106	91	156	108
7	13	57	67	107	91	157	108
8	15	58	68	108	92	158	108
9	16	59	68	109	92	159	109
10	18	60	69	110	93	160	109
11	20	61	70	111	93	161	109
12	21	62	70	112	93	162	109
13	23	63	71	113	94	163	110
14	24	64	71	114	94	164	110
15	26	65	72	115	94	165	110
16	27	66	73	116	95	166	110
17	29	67	73	117	95	167	111
18	30	68	74	118	95	168	111
19	32	69	74	119	96	169	111
20	33	70	75	120	96	170	111
21	34	71	75	121	96	175	112
22	35	72	76	122	97	180	113
23	37	73	76	123	97	185	114
24	38	74	77	124	97	190	114
25	39	75	77	125	98	195	115
26	40	76	78	126	98	200	115
27	41	77	78	127	99	205	115
28	42	78	79	128	99	210	116
29	43	79	79	129	99	215	116
30	44	80	80	130	100	220	116
31	45	81	80	131	100	225	116
32	46	82	81	132	100	230	117
33	47	83	81	133	101	235	117
34	48	84	82	134	101	240	117
35	49	85	82	135	101	250	118
36	50	86	83	136	102	260	118
37	51	87	83	137	102	270	119
38	52	88	84	138	102	280	119
39	53	89	84	139	103	290	120
40	54	90	85	140	103	300	120
41	55	91	85	141	103	310	121
42	56	92	86	142	104	320	121
43	57	93	86	143	104	330	122
44	57	94	87	144	104	340	122
45	58	95	87	145	105	350	123
46	59	96	87	146	105	360	123
47	60	97	88	147	105	370	124
48	60	98	88	148	106	380	124
49	61	99	89	149	106	390	125

150 FEET

Depth	Factor	Depth	Factor	Depth	Factor	Depth	Factor
		50	56	100	82	150	100
1	2	51	56	101	82	151	100
2	3	52	57	102	83	152	101
3	5	53	58	103	83	153	101
4	6	54	58	104	84	154	101
5	8	55	59	105	84	155	102
6	9	56	60	106	85	156	102
7	11	57	60	107	85	157	102
8	12	58	61	108	85	158	102
9	14	59	61	109	86	159	103
10	15	60	62	110	86	160	103
11	16	61	63	111	87	161	103
12	18	62	63	112	87	162	104
13	19	63	64	113	87	163	104
14	20	64	64	114	88	164	104
15	22	65	65	115	88	165	104
16	23	66	65	116	88	166	105
17	24	67	66	117	89	167	105
18	26	68	66	118	89	168	105
19	27	69	67	119	90	169	105
20	28	70	67	120	90	170	106
21	29	71	68	121	90	175	107
22	30	72	68	122	91	180	108
23	31	73	69	123	91	185	109
24	32	74	69	124	91	190	110
25	34	75	70	125	92	195	110
26	35	76	70	126	92	200	111
27	36	77	71	127	93	205	111
28	37	78	71	128	93	210	112
29	38	79	72	129	93	215	112
30	39	80	72	130	94	220	112
31	40	81	73	131	94	225	112
32	41	82	73	132	94	230	113
33	42	83	74	133	95	235	113
34	43	84	74	134	95	240	113
35	44	85	75	135	95	250	114
36	44	86	75	136	96	260	114
37	45	87	76	137	96	270	115
38	46	88	76	138	96	280	115
39	47	89	77	139	97	290	116
40	48	90	77	140	97	300	116
41	49	91	78	141	97	310	117
42	50	92	78	142	98	320	117
43	50	93	79	143	98	330	118
44	51	94	79	144	98	340	118
45	52	95	80	145	99	350	119
46	53	96	80	146	99	360	119
47	53	97	81	147	99	370	120
48	54	98	81	148	100	380	120
49	55	99	82	149	100	390	121

200 FEET

Depth	Factor	Depth	Factor	Depth	Factor	Depth	Factor
		50	46	100	70	150	89
1	2	51	46	101	71	151	89
2	3	52	46	102	71	152	90
3	5	53	47	103	71	153	90
4	6	54	47	104	72	154	91
5	8	55	48	105	72	155	91
6	9	56	48	106	73	156	92
7	11	57	49	107	73	157	92
8	12	58	49	108	73	158	92
9	14	59	50	109	74	159	93
10	15	60	50	110	74	160	93
11	16	61	51	111	74	161	94
12	18	62	51	112	75	162	94
13	19	63	52	113	75	163	95
14	20	64	52	114	75	164	95
15	22	65	53	115	76	165	95
16	23	66	53	116	76	166	96
17	24	67	54	117	76	167	96
18	26	68	54	118	77	168	97
19	27	69	55	119	77	169	97
20	28	70	55	120	77	170	97
21	29	71	56	121	78	175	98
22	30	72	56	122	78	180	98
23	31	73	57	123	78	185	99
24	32	74	57	124	79	190	99
25	34	75	58	125	79	195	100
26	35	76	58	126	79	200	100
27	35	77	59	127	80	205	100
28	36	78	59	128	80	210	100
29	36	79	60	129	80	215	101
30	37	80	60	130	81	220	101
31	37	81	61	131	81	225	101
32	37	82	61	132	82	230	101
33	38	83	62	133	82	235	102
34	38	84	62	134	82	240	102
35	39	85	63	135	83	250	102
36	39	86	63	136	83	260	102
37	40	87	64	137	84	270	102
38	40	88	64	138	84	280	103
39	40	89	65	139	84	290	103
40	41	90	65	140	85	300	103
41	41	91	66	141	85	310	103
42	42	92	66	142	86	320	104
43	42	93	67	143	86	330	104
44	43	94	67	144	87	340	104
45	43	95	68	145	87	350	104
46	44	96	68	146	87	360	104
47	44	97	69	147	88	370	105
48	45	98	69	148	88	380	105
49	45	99	70	149	89	390	105

The following Location Modifiers reflect local cost conditions for each of the localities listed. They are based on surveys of weighted labor and material costs with District II AREA A as the base. These modifiers will be updated annually.

WISCONSIN RESIDENTIAL PROPERTY ASSESSMENT MANUAL, VOLUME II

	Residential		
Location	$\begin{array}{c}\text { Frame, } \\ \text { Masonry } \\ \text { Veneer or }\end{array}$	$\begin{array}{c}\text { Brick, } \\ \text { Log }\end{array}$	$\begin{array}{c}\text { Agricul- } \\ \text { Coner or } \\ \text { tural } \\ \text { Block }\end{array}$
Buildings			

	Residential		
Location	Frame, Masonry Veneer or Log	Brick, Stone or Concrete Block	$\begin{aligned} & \text { Agricul- } \\ & \text { tural } \\ & \text { Buildings } \end{aligned}$
Marathon			
Marinette			
Marquette			
Menominee			
Milwaukee			
Monroe			
Oconto			
Oneida			
Outagamie			
Ozaukee			
Pepin			
Pierce			
Polk			
Portage			
Price			
Racine			
Richland			
Rock			
Rusk			
Sauk			
Sawyer			
Shawano			
Sheboygan			
St. Croix			
Taylor			
Trempealeau			
Vernon			
Vilas			
Walworth			
Washburn			
Washington			
Waukesha			
Waupaca			
Waushara			
Winnebago			
Wood			

[^1]
A Standard System of Identifying and Coding Local Assessment Classification - Three-Digit Level

Category	Code	Category	Code
Residential Sites	160	Agricultural River Frontage Value	481
Residential River Frontage Value	181	Agricultural Lake Frontage Value	482
Residential Lake Frontage Value	182	Agricultural Road Frontage Value	483
Residential Road Frontage Value	183	Agricultural Unmeandered Land	484
Residential Unmeandered Land	184	Total Agricultural F rontage Value	480
Total Residential Frontage Value	180	Agricultural Parcel Size Adjustment	490
Residential Parcel Size Adjustment	190	Total Agricultural Lands	400
Total Residential Lands	100	Fallow 1st Grade Tillable Land	501
		Fallow 2nd G rade Tillable Land	502
Commercial Sites	260	Fallow 3rd Grade Tillable Land	503
Commercial River Frontage Value	281	Fallow Pasture Land	504
Commercial Lake Frontage Value	282	Total Fallow Lands	505
Commercial Road Frontage Value	283	Swamp	511
Commercial Unmeandered Land	284	Waste	512
Total Commercial F rontage Value	280	Conservation Easements	513
Commercial Parcel Size Adjustment	290	Total S wamp and Waste	510
Total Commercial Lands	200	Quarries, Pits and Mines Privately Owned Dumps, Sanitary	531
Manufacturing Sites	360	Land Fills, etc.	532
Manufacturing River Frontage Value	381	Total Quarries, Pits, Mines \& P rivately Owned Sanitary Land Fills, Dumps, etc.	530
Manufacturing Lake Frontage Value	382	Unmeandered Waters (Privately	
Manufacturing Road Frontage Value	383	Owned Non-navigable)	540
Manufacturing Unmeandered Land	384	Residual River Frontage Value	581
Total Manufacturing Frontage Value	380	Residual Lake Frontage Value	582
Manufacturing P arcel Size		Residual Road Frontage Value	583
Mdjustment	390	Residual Unmeandered Land	584
Total Manufacturing Lands	300	Total Residual F rontage Value	580
		Residual Parcel Size Adjustment	590
1st Grade Tillable Land	411	Total Residual Lands	500
2nd Grade Tillable Land	412	Primary Forest	611
3rd Grade Tillable Land	413	Secondary Forest	612
Irrigated Land	414	Residual Forest	613
Total Tillable Land	410	Cutover	614
Orchards	420	Total Forest and Cutover	610
Prime Pasture	441	Seedlings	651
Secondary Pasture	442	Pine Plantation	652
Residual Pasture	443	Christmas Tree Plantation	653
Total Pasture	440	Total Christmas Tree Plantations	650
Cranberry Bogs	451	Forest River Frontage Value	681
Tobacco	452	F orest Lake Frontage Value	682
G inseng	453	Forest Road Frontage Value	683
Muck	454	Forest Unmeandered Land	684
Ponds	455	Total Forest F rontage Value	680
All Other Agricultural Land Not		Total Forest Lands	600
Coded Elsewhere	456		
Total S pecialty Lands	450	Other Homesites	700

Category	Code
Regular Forest Crop, Special Forest C rop,	
\quad Managed Forest Land and	811
\quad Woodland Tax	812
Utilities	810
Total Specially Taxed Lands	820
County Forest C rop	830
Federally Owned	841
State Owned Meandered Waters	
State Owned Navigable Waters (not on	842
\quad government survey)	843

Total State Owned 840
County Owned 850
School O wned 860
Municipal Owned 870
Other Exempt 881
Exempt Unmeandered Land 884
Total Other Exempt and Exempt Unmeandered Land 880
Total Other Lands 800
Total Parcel 900

A Standard System of Identifying and Coding Local Assessment Classification - Three-Digit Level

160 Residential Sites include all of the land under the buildings and area immediately surrounding them; land that is used for wells, septic systems, etc.

412 2nd Grade Tillable Land is land being used for farm purposes and which is plowed or capable of being plowed and made up of all those soil series and types shown on the County Soil Survey as having a lesser production capability than1stgrade soils, though of good slope and erosion ratings It also includes lands comprising those soil types with the best production capability but whose poor slopes and erosion ratings exclude them from being classed as 1st grade.
Residential River Frontage Value.
Residential Lake Frontage Value.
Residential Road Frontage Value.
Residential Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be residential.

Total Residential Frontage Value.
Residential Parcel Size Adjustment.
Total Residential Lands are the total of all the residential land within a specified area.
Commercial Sites include all of the land under buildings, parking lots, etc., and area immediately surrounding them. Also includes the land used for wells, septic systems, etc.

Commercial River Frontage Value.
Commercial Lake Frontage Value.
Commercial Road Frontage Value.
Commercial Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be commercial.

Total Commercial Frontage Value.
Commercial Parcel Size Adjustment.
Total Commercial Lands is a total of all the commercial land within a specified area.
Manufacturing Sites include the acreages of manufacturing sites taken directly from the SAM rolls.
Manufacturing River Frontage Value.
Manufacturing Lake Frontage Value.
Manufacturing Road Frontage Value.
Manufacturing Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be used for manufacturing.

Total Manufacturing Frontage Value.
Manufacturing Parcel Size Adjustment.
Total Manufacturing Lands is a total of all the manufacturing land.
1st Grade Tillable Land is land being used for farm purposes and made up of all those soil series and types shown on the County or Regional Soil Survey as possessing the best production capabilities, with suitable slope and erosion ratings.

3rd Grade Tillable Land is land being used for farm purposes and which is plowed or capable of being plowed and made up of all those soil series and types shown on the Soil Survey with the poorest productivity rating or those soils of higher productivity with the poorest slope and erosion ratings, which prevent them from being classed in a higher grade. Sometimes the poorest lands in this grade have been cultivated for a period of years, and then cultivation has been abandoned. Such land is not included in this grade, but in pasture.

410 Total Tillable Land is the total of all tillable land which constitutes the1st grade, 2nd grade, 3rd grade and irrigated subclasses.

420 Orchards are plots of an acre or more of land with any type of orchard planted on them, i.e., apples, cherries, etc.

441 Prime Pasture is pasture adjacent to a road, with water, well drained, near buildings, having good forage grasses, and relatively open.

511 Swamp is, as the name implies, water saturated land. The land is always low and usually displays small bodies or winding channels of openwater. Organic soil texture and very highwater tables are also characteristic of swamp.

Waste can refer to many land features such as bedrock outcrops, extremely steep slopes (over 30\%), slag piles and other non-productive land.

513 Conservation Easements are normally lands in which a permanent easement, either restricting farm use or supporting hunting or fishing rights, is held by either the DNR or the Federal Fish and Wildlife Service. These lands would normally be classified as pasture or swamp and waste.

Total Swamp and Waste is the total of 511, 512 and 513.
Quarries, Pits and Mines are quarries, pits and mines not listed on the SAM roll. If they are producing, they may be listed on the SAM roll and carried as manufacturing. If they are not, they are classed as 531, whether they are nonproducing or abandoned.

Privately Owned Sanitary Land Fills, Dumps, etc.
Total Quarries, Pits and Mines and Privately Owned Sanitary Land Fills, Dumps, etc., is the total of 531 and 532.

Unmeandered Waters (PrivatelyOwned Non-navigable) are waters whose bounds have not been established on the government survey. An example would be a non-navigable stream that has changed its course. The government survey would indicate land where the water now flows. This section would be unmeandered privately owned water. By the same token, the former river bed would be classed as unmeandered land.

Residual River Frontage Value.
Residual Lake Frontage Value.
Residual Road Frontage Value.
Residual Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be residual.

Total Residual Frontage Value.
Residual Parcel Size Adjustment.
Total Residual Lands is the total of all residual land.
Primary Forest is land covered with productive timber; it has excellent accessand utilities available and is "high and dry."

612 Secondary Forest has small wooded pockets interspersed among tillable land; it has poor access and is marginal in production.

Residual Forest is low and wet and nearly inaccessible.
Cutover is land in a transitional stage between forest and its next use; trees have been removed by logging.

Total Forest and Cutover is the total of forest lands coded in the 610 series.
Seedlings represents land planted in pines 0 to 3 feet tall, where it cannot be determined whether the ultimate use is logging or cutting Christmas trees.

Pine Plantation is land planted with unsheared pines for the purpose of logging.
Christmas Tree Plantation is land planted with sheared pines to be cut for Christmas trees. Shearing usually begins when trees are approximately 4 feet tall. Cutting usually occurs at 8 to 10 years in maturity.

Total Seedling, Pine and Christmas Tree Plantations represents the total amount of land planted in seedlings, pine or Christmas trees.

Forest River Frontage Value.
Forest Lake Frontage Value.
Forest Road Frontage Value.

Forest Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be forest land.

Total Forest F rontage Value.
Forest Parcel Size Adjustment.
Total Forest Lands is the total of all forest lands.
Other Homesites represents all of the land under the buildings and the area immediately surrounding them; this includes land used for wells, septic systems, etc.

Regular Forest Crop, Special Forest Crop, Managed Forest Land and Woodland Tax.
Utilities includes all utilities such as electric companies, gas companies, railroads, etc., subject to taxation under C hapter 76.

Total Specially Taxed Lands is what the category title implies.
County Forest Crop includes forest lands which have been entered by action of county boards under Section 28.10 into the forest crop program under Section 77. This land is listed in the assessment roll under County Forest Crop Acres.

Federally Owned includes all federally owned lands. Federally owned property may be exempt from assessments. Examples are U.S. highways, federally owned forests, etc.

State Owned Meandered Waters include all navigable bodies of water, which are property of the state. Their bounds have been established on the government survey.

State Owned Navigable Waters. Again, all navigable waters are property of the state. State-owned navigable waters are those whose bounds have not been established on the government surveys. For example, new river channels or elevated lake levels may have developed since the original government survey.

All Other State-Owned is what the category title implies. Examples are state highways stateowned forests, conservation lands, etc.

Total State Owned is the total of the 840 series.
County O wned includes all county owned lands.
School Owned is all school owned lands.
Municipal Owned includes such things as dumps and sanitary land fills if not privately owned. All muncipality-owned lands fall into this category.

Other Exempt includes lands used for Lions foundations, Boy and Girl Scouts, Bible camps, etc. (Sec. 70.11).

Exempt Unmeandered Land is land which, because of a change in the course of a river or a drop in the water level, now is "high and dry." This land may be exempt property belonging to a unit of government or may be part of a parcel qualifying for an exemption under Sec. 70.11.

Total Other Exempt and Exempt Unmeandered Land is the total of 881 and 884 .
Total, Other Lands is the total of all exempt lands.
Total Parcel is the total acreage summation. For example, the $100,200,300,400,500,600,700$ and 800 categories, when added together, will equal the total parcel.

Appraisers use a wide variety of mathematical techniques ranging from simple arithmetic and algebraic formulas to the statistical techniques of multiple regression analysis. Addition, subtraction, multiplication and division can be done manually or with a simple calculator, but more sophisticated calculators may be needed to solve algebraic formulas and to perform linear regression analyses. Computers are required for nearly all stepwise multiple regression analyses.

With the general availability of calculators and computers, the use of sophisticated techniques is increasing in appraisal practice. This section provides a review of the mathematical procedures and terminology used by appraisers. Familiar processes are illustrated, and the rules that apply to each process are discussed.

Basic Arithmetic for Data Processing

Data collected in the market are analyzed in the valuation process to derive an estimate of value. These data may include building dimensions, population figures, reproduction and replacement costs, rents, and sale prices. Processing these data ultimately leads to conclusions and final value estimates, which are expressed numerically. The mathematical relationships represented by rates and factors are usually stated as decimals rather than fractions.

Rates

Rates are percentages expressed in terms of a specific time period. For example,
$\$ 8$ interest per year on $\$ 100$ principal $=8 \%$ interest per year
$\$ 0.50$ interest per month on $\$ 100=0.005$ or 0.5% interest per month
A rate reflects the relationship between one quantity and another. In the first example, the 8% rate relates the $\$ 8$ of interest returned to the $\$ 100$ of principal invested. In appraising, an unknown capital amount can be determined when only the rate and the amount of annual return are known.

Reciprocals

The reciprocal of a number is 1 divided by that number. For example, the reciprocal of 4 is $1 / 4$, which may be expressed as 0.25 . When two numbers have a reciprocal relationship, 1 divided by either number equals the other number. Reciprocal relationships exist between some financial factors. For example, the present value of $\$ 1$ per period factor and the partial payment factor are reciprocals. These annual factors in the 10% tables for 10 periods are 6.144567 and 0.162745 , respectively. Because they are reciprocals,

$$
\frac{1}{6.144567}=0.162745
$$

and

$$
\frac{1}{0.162745}=6.144567
$$

When a reciprocal relationship exists, multiplication by one of the numbers is equivalent to division by the other.

Factors

Factors are the reciprocals of rates and may be used to express relationships between income and capital value. Using I, R and V to represent income, rate and value, and F to represent a factor, the relationships may be expressed as

$$
\begin{array}{ll}
I=V \times R & I=\frac{V}{F} \\
R=\frac{I}{V} & F=\frac{V}{I} \\
V=\frac{I}{R} & V=I \times F
\end{array}
$$

These relationships, which are commonly referred to as IRV and VIF, may be shown as follows.

$$
\frac{I}{R \mid V} \text { and } \frac{V}{I \mid F}
$$

The formula for any single component is represented by the horizontal or vertical relationship of the remaining two components as one multiplied by, or divided by, the other.

Basic Statistics

Statistics can be applied to interpret available data and to support a value conclusion. In the language of statistics, a population is defined as all the items in a specific category. If, for example, the category is houses in Chicago, the population consists of all the houses in Chicago. However, data pertaining to an entire population are rarely available and conclusions often must be developed from incomplete data.

Using statistical concepts, conclusions about a population can be derived and evaluated from sample data. A sample is part of a population; the quality of conclusions based on a sample will vary with the quality and extent of the sample.

One item in a population is called a variate. In appraising, statistics can be used to identify the attributes of the typical variate in a population. When observations about a population can be measured, the analysis may be quantitative; when these observations cannot be measured, the analysis is qualitative-i.e., it reflects the attributes of the population.

A variate is discrete when it can assume a limited number of values on a measuring scale and continuous when it can assume an infinite number of values. A typical population of attributes for house types might include one-story, two-story, and split-level houses. It is usually impractical to display or identify a population of variates because there are many.

One common problem in statistics is how to describe a population in universally understandable terms. For example, how does one describe all the houses in a community that have sold in the past year without describing each sale individually? One possible solution is to use a single number called a parameter to describe the whole population. When one parameter is used to describe a population, it is called an aggregate, which is the sum of all the variates. For example, all the house sales in a commu-
nity in a given year can be described by the total dollar amount of all the sales. In statistical language this is written as

$$
\begin{aligned}
& \Sigma=\text { sigma or sum of } \\
& X=\text { variate } \\
& \Sigma X=\text { aggregate (summation of the variates) }
\end{aligned}
$$

Measures of Central Tendency

Three common statistical measures are the mean, the median, and the mode. All three measure central tendency and are used to identify the typical variate in a population or sample. Measures that refer to a population are called parameters, while similar measures in a sample are called statistics.

The mean, which is commonly called the average, is by far the most commonly used parameter. It is obtained by dividing the sum of all the variates in a population by the number of variates. In real estate appraising, the mean may represent an average sale price, an average number of days on the market, an average apartment rent, or an average cost per square foot.

When the mean is used to describe a population, it can be distorted by extreme variates. Consider the following list of 36 house sales in a neighborhood. From these figures, the mean of the population can be calculated. (The list indicates the median and the mode of the population, which are discussed next.)
$\left.\begin{array}{l}\$ 72,000 \\ 74,600 \\ 76,000 \\ 77,200 \\ 78,000 \\ 79,000 \\ 79,800 \\ 79,800 \\ 82,000 \\ 82,000 \\ 84,000 \\ 85,600 \\ 85,800 \\ 86,000 \\ 87,000 \\ 87,200 \\ 87,400 \\ 87,800 \\ 87,800 \\ 87,800 \\ 88,000 \\ 89,800 \\ 90,000 \\ 90,000 \\ 90,000 \\ 90,000\end{array}\right\}$ median (Md.)=\$87,800

$$
\begin{gathered}
90,600 \\
91,000 \\
91,000 \\
93,800 \\
93,800 \\
96,600 \\
97,000 \\
97,200 \\
97,200 \\
98,800 \\
\hline \text { Mean }=\bar{X}=\frac{\Sigma X}{Y}=\frac{\$ 31,600}{}=\$ 131,600 \\
36
\end{gathered}=\$ 86,989
$$

where $\Sigma X=$ sum of the variates and $N=$ number of variates.
The same procedure can be performed with grouped data. To group the data, the frequency (f) with which a given sale price occurs must be identified and its contribution must be effectively weighted. Given the same data, identical results are produced.

The average, or mean, price in this example might not accurately represent the population of houses that have been sold at prices outside the indicated range.

The median is another measure used to describe a population, a sample, or an average variate. The median divides the variates of a population or sample into equal halves. To find the median, the variates are arranged in numerical order like the list of sale prices in the example. If the total number of variates is odd, the median is the middle variate. If the total number of variates is even, as in the example, the median is the arithmetic mean of the two middle variates.

In the list of 36 house sales, the middle two variates are $\$ 87,800$ and $\$ 87,800$.The mean of these two variates is $\$ 87,800$, which is the median of the 36 sales. The same number of sales occurs above the median as below it.

Like the median and the mean, the mode is a parameter used to describe the typical variate of a population. The mode is the variate or attribute that appears most frequently in a population. Of the 36 house sales, four were sold at $\$ 90,000$. No other sale price occurs with this frequency, so the mode in this sample is $\$ 90,000$. If two variates occur with equal frequency, both are modes and the sample is bimodal.

To illustrate, consider the following population of the types of condominium apartments available in a nine-unit complex.

One of the problems in using statistics is selecting the appropriate measure of central tendency to describe a population. The following numbers could be used to describe the 36 variates in the group of house sales.

$$
\begin{aligned}
& X=\$ 86,989 \text { (the mean of all the sales) } \\
& \text { Md. }=\$ 87,800 \text { (the median of the sales) } \\
& \text { Mo. }=\$ 90,000 \text { (the mode of the sales) }
\end{aligned}
$$

The mean is often used to describe a sample or population because this measure is widely understood and amenable to further statistical analysis.

Measures of Variation

The parameters of mean, median, and mode are used to describe the central tendencies of a population. Other sets of parameters can provide more information about the population being described. Measures of variation, or measures of dispersion, describe the disparity among the values of the variates that make up the population. They indicate the degree of uniformity among the variates and reflect the quality of the data as a basis for a conclusion.

Range

One way to measure the disparity between the variates is with a range (R). The range is the difference between the highest and the lowest variates.

$$
R=\text { maximum variate minus minimum variate }
$$

The range for the 36 house sales is calculated as

$$
R=\$ 98,800-\$ 72,000=\$ 26,800
$$

As a measure of variation, the range has limited usefulness because it considers only the variation between the highest and lowest values, not the variation in the remaining values. Furthermore, a range does not lend itself to further statistical analysis.

Average Deviation

Another parameter used to measure the variation in a population is the average deviation, which is also known as the average absolute deviation because positive and negative signs are ignored. The average deviation is a measure of how much the actual values of a population or sample deviate from the mean. It is the mean of the sum of the absolute differences of each of the variates from the mean of the variates.

The average deviation of the 36 sales can be calculated from ungrouped or grouped data.

Ungrouped Data

X Sale Price		$\|X-\bar{X}\|$ Absolute Deviation Between Each Variate and the Mean Sale Price of \$86,989	
\$ 72,000		\$ 14,989	
74,600		12,389	
76,000		10,989	
77,200		9,789	
78,000		8,989	
79,000		7,989	
79,800		7,189	
79,800		7,189	
82,000		4,989	
82,000		4,989	
84,000		2,989	
85,600		1,389	
85,800		1,189	
86,000		989	
87,000		11	
87,200		211	
87,400		411	
87,800		811	
87,800		811	
87,800		811	
88,000		1,011	
89,800		2,811	
90,000		3,011	
90,000		3,011	
90,000		3,011	
90,000		3,011	
90,600		3,611	
91,000		4,011	
91,000		4,011	
93,800		6,811	
93,800		6,811	
96,600		9,611	
97,000		10,011	
97,200		10,211	
97,200		10,211	
98,800		11,811	
\$3,131,600	Total of sale prices	\$192,088	Total deviation from mean $\Sigma\|X-\bar{X}\|$

\boldsymbol{X}	$\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|$	f	$f\|x-\bar{x}\|$
\$72,000	\$14,989	1	\$ 14,989
74,600	12,389	1	12,389
76,000	10,989	1	10,989
77,200	9,789	1	9,789
78,000	8,989	1	8,989
79,000	7,989	1	7,989
79,800	7,189	2	14,378
82,000	4,989	2	9,978
84,000	2,989	1	2,989
85,600	1,389	1	1,389
85,800	1,189	1	1,189
86,000	989	1	989
87,000	11	1	11
87,200	211	1	211
87,400	411	1	411
87,800	811	3	2,423
88,000	1,011	1	1,011
89,800	2,811	1	2,811
90,000	3,011	4	12,044
90.600	3,611	1	3,611
91,000	4,011	2	8,022
93,800	6,811	2	13,622
96,600	9,611	1	9,611
97,000	10,011	1	10,011
97,200	10,211	2	20,422
98,800	11,811	1	11,811
		36	\$192,088 Total deviation from mean $\Sigma f\|x-\bar{x}\|$

$$
\begin{aligned}
& \text { A.D. (ungrouped data) }=\frac{\Sigma|X-\bar{X}|}{n}=\frac{\$ 192,088}{36}=\$ 5,336 \\
& \text { A.D. (grouped data) }=\frac{\Sigma f X-\bar{X} \mid}{n}=\frac{\$ 192,088}{36}=\$ 5,336
\end{aligned}
$$

A.D. = average deviation
$\Sigma=$ sum of
$f=$ frequency
$X=$ observed value
| | = absolute value (ignore whether the difference is positive or negative)
$n=$ number of observations in sample
$\bar{X}=$ mean of sample
These calculations indicate that the average deviation of the individual values in the population from the mean is $\$ 5,336$, or about 6%. This relatively small variation suggests that the mean is an acceptable representation of the population.

Like the range, the average deviation does not lend itself to further statistical calculations.

Standard Deviation

The standard deviation is a way to describe a sample or a population that lends itself to further mathematical treatment. When this measure is used, the rules of probability can be applied to draw inferences from samples concerning the attributes of the population. The square of the difference between each observation and the mean of the observations is used in lieu of the absolute deviation. In this way the effects of extreme variance from the mean are magnified.

In the example the mean house sale price is $\$ 86,989$; for an $\$ 82,000$ sale, the standard deviation is $\$ 4,989$ squared, or $\$ 24,890,121$.

When the standard deviation of an entire population is being calculated, it is symbolized by the lowercase sigma (σ). The formula may be expressed verbally as follows: The standard deviation of a population is the square root of the sum of the squared differences between each observation and the mean of all the observations in the population, divided by the number of observations in the population.

When the standard deviation of a sample of a population is being calculated, it is symbolized by the lowercase letter s. Expressed verbally, the formula is: The standard deviation of a sample is the square root of the sum of the squared differences between each observation and the mean of all the observations in the sample, divided by the number of observations in the sample minus one.

One is subtracted from the number of observations in a sample to adjust for the one degree of freedom that is lost when the mean is calculated. (See the discussion of simple linear regression analysis that is presented later in this appendix.) A set of data starts with as many degrees of freedom as there are observations; each time a statistic is calculated directly from the data, one degree of freedom is lost.

Formulas for calculating the standard deviations follow.
For a population:

$$
\begin{array}{ll}
\text { Ungrouped } & \text { Grouped } \\
\sigma=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N}} & \sigma=\sqrt{\frac{\sum f(X-\bar{X})^{2}}{N}}
\end{array}
$$

For a sample:

$$
\begin{aligned}
& \text { Ungrouped } \\
& s=\sqrt{\frac{\sum(X-\bar{X})^{2}}{n-1}}
\end{aligned}
$$

Grouped
$s=\sqrt{\frac{\Sigma f(X-\bar{X})^{2}}{n-1}}$

Samples are typically used in real estate appraising, so the second formula is usually applicable. The standard deviation for the 36 house sales as grouped data is calculated in Table B.1.

The standard deviation is a useful way to describe the dispersion of a population or sample. It indicates how well the mean represents the whole sample or population by describing a standard measure of variation. The standard deviation is used and understood in many disciplines and it can be calculated easily with an electronic calculator. It will undoubtedly be more widely used by appraisers in the future.

The standard deviation can also indicate what percentage of the sample of a population may be expected to fall within selected ranges of confidence intervals. (Confidence levels are discussed later in this appendix.) Approximately 68.26% of the sample or population will generally fall within plus or minus one standard deviation from the mean, provided the data meet the tests of normal distribution, which are explained later. Many types of real estate data conform to the pattern of a normal distribution when they are developed with appropriate sampling techniques.

TABLE B. 1
Standard Deviation for 36 House Sales

\boldsymbol{X}	f	$(x-\bar{x})$	$(x-\bar{x})^{2}$	$f(x-\bar{x})^{2}$
\$72,000	1	\$14,989	\$224,670,000	\$224,670,000
74,600	1	12,389	153,487,000	153,487,000
76,000	1	10,989	120,758,000	120,758,000
77,200	1	9,789	95,824,500	95,824,500
78,000	1	8,989	80,802,100	80,802,100
79,000	1	7,989	63,824,100	63,824,100
79,800	2	7,189	51,681,700	103,363,000
82,000	2	4,989	24,890,100	49,780,200
84,000	1	2,989	8,934,120	8,934,120
85,600	1	1,389	1,929,320	1,929,320
85,800	1	1,189	1,413,720	1,413,720
86,000	1	989	978,121	978,121
87,000	1	11	121	121
87,200	1	211	44,521	44,521
87,400	1	411	168,921	168,921
87,800	3	811	657,721	1,973,160
88,000	1	1,011	1,022,120	1,022,120
89,800	1	2,811	7,901,720	7,901,720
90,000	4	3,011	9,066,120	36,264,500
90.600	1	3,611	13,039,300	13,039,300
91,000	2	4,011	16,088,100	32,176,200
93,800	2	6,811	46,389,700	92,779,400
96,600	1	9,611	92,371,300	92,371,300
97,000	1	10,011	100,220,000	100,220,000
97,200	2	10,211	104,265,000	208,530,000
98,800	1	11,811	139,500,000	139,500,000
\$ $1,631,755,444$Rounded$\$ 1,631,760,000$				

Assuming this is a normal distribution, 68.26% of the house sales in the population will fall between $\$ 80,161(\$ 86,989-\$ 6,828)$ and $\$ 93,817(\$ 86,989+\$ 6,828)$. Approximately 95.44% of the sales should fall within two standard deviations from the mean and approximately 99.74% should fall within three standard deviations from the mean.

Because the standard deviation lends itself to further mathematical calculations, it can be used for analytical purposes as well as to describe a population.

$$
\begin{aligned}
& s=\sqrt{\frac{\Sigma f(X-\bar{X})^{2}}{n-1}} \\
& s=\sqrt{\frac{\$ 1,631,760,000}{36-1}} \\
& s=\sqrt{\$ 46,621,714} \\
& s=\$ 6,828
\end{aligned}
$$

Mean: \$86,989

Statistical Inference

Statistical inference is based on the assumption that past market actions provide a valid basis for forecasting present or future market actions. In the example, past sale prices are used to estimate current sale prices. The same technique can be used to forecast rents, costs, depreciation, and other amounts using the rules of probability.

A normal curve is produced when a normal distribution is plotted on a graph to illustrate a distribution of data. Although the original data may not be normally distributed,
the results of repeated random samples may approximate a normal distribution. Sales are often treated as though they were normally distributed in competitive, openmarket situations.

A normal curve often takes the form of a bell curve. One major characteristic of a bell curve is its symmetry. Both halves of the curve have the same shape and contain the same number of observations. The mean, median, and mode are the same value and fall at the midpoint, or apex, of the curve.
Figure B.I is a bell curve that illustrates the 36 house sales. It shows that 68.26% of the observations will fall within the range of the mean, plus or minus one standard deviation; 95.44% will fall within plus or minus two standard deviations; and 99.74% will fall within plus or minus three standard deviations. The figure depicts an analysis of the probable population distribution for the 36 sales, assuming a normal distribution.
50% of sales under
50% of sales over
68.26\% of the sales between and
95.44% of the sales between and
99.74\% of the sales between and

Standard Deviation

Minus three standard deviations	Minus two standard deviations	Minus one standard deviations	Mean	Plus one standard deviations	Plus two standard deviations	Plus three standard deviations

Sale Price

Figure B. 1 Area Under the Normal Curve for $\mathbf{3 6}$ House Sales

Under the bell curve, the ranges for one, two, and three standard deviations are shown. The percentage of the population that will fall within a given distance from the mean or within any specified range can be calculated. For example, the percentage of sales included within a range of $\$ 91,989$ to $\$ 81,989$ (i.e., the mean of $\$ 86,989$ plus or minus $\$ 5,000$) may be estimated by calculating the Z value for this range with the formula presented below and then consulting a table of areas under the normal curve for the calculated value of Z.

$$
Z=\text { the deviation of } X \text { from the mean measured in standard deviations }
$$

$$
\begin{aligned}
& Z=\frac{X-\text { mean }}{\text { standard deviation }} \\
& Z=\frac{\$ 91,989-\$ 86,989}{\$ 6,828}=0.73
\end{aligned}
$$

This formula shows that $\$ 91,989$ and $\$ 81,989$ each deviate from the mean of $\$ 86,989$ by 0.73 standard deviations.

The percentage of sales within this Z range of plus or minus 0.73 standard deviations can be found by locating 0.7 in the Z column of Table B. 2 and then looking across the top of the table for the next digit-i.e., 0.03. The table indicates that 26.73% of the sales fall between $\$ 86,989$ and $\$ 91,989$ or between $\$ 86,989$ and $\$ 81,989$; therefore, 53.46% of the sales will fall between $\$ 91,989$ and $\$ 81,989$.

The probability of a randomly selected sale falling within a given range can also be determined with the Z value. Using the sample of 36 house sales, which has a mean of $\$ 86,989$ and a standard deviation of $\$ 6,828$, the probability of a randomly selected sale falling between $\$ 86,989$ and $\$ 88,989$ is calculated as follows:

$$
Z=\frac{X-\text { mean }}{\text { standard deviation }}=\frac{\$ 88,989-\$ 86,989}{\$ 6,828}=0.29
$$

The table of areas under the normal curve, Table B.2, shows that a Z value of 0.29 corresponds to 0.1141 . This indicates that there is an 11.41% chance that the sale will fall within $\$ 2,000$ above the mean. Because the curve of a normal distribution is symmetrical, there is the same probability that a sale will fall within $\$ 2,000$ below the mean.

Probability a sale will fall between $\$ 88,989$ and $\$ 86,989$
11.41%

Probability a sale will fall between $\$ 84,989$ and $\$ 86,989$ 11.41%

Probability a sale will fall between $\$ 84,989$ and $\$ 88,989$ 22.82\%

If the range in this example is expanded to $\$ 4,000$ plus or minus the mean of $\$ 86,989-i . e .$, between $\$ 82,989$ and $\$ 90,989$-the probability of a randomly selected sale falling within this range is increased.

$$
Z=\frac{X-\text { mean }}{\text { standard deviation }}=\frac{\$ 90,989-\$ 86,989}{\$ 6,828}=0.59
$$

TABLE B. 2
Areas Under the Normal Curve

\mathbf{Z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

According to Table B.2, a Z value of 0.59 corresponds to 0.2224 .
Probability a sale will fall between
$\$ 90,989$ and $\$ 86,989$
22.24%
Probability a sale will fall between
$\$ 82,989$ and $\$ 86,989$

22.24\%

Probability a sale will fall between
$\$ 82,989$ and $\$ 90,989$
44.48%
In these examples the range being tested has been equally distributed above and below the mean sale price. However, the probability of a randomly selected sale falling within any selected range in the population can also be tested. For example, the probability of a sale falling between $\$ 80,000$ and $\$ 100,000$ can be calculated as follows:

$$
\begin{aligned}
& Z \text { area }_{1}=\frac{X_{1}-\text { mean }}{\text { standard deviation }}=\frac{\$ 80,000-\$ 86,989}{\$ 6,828}=1.02 \\
& Z \text { area } \\
& 2
\end{aligned}=\frac{X_{2}-\text { mean }}{\text { standard deviation }}=\frac{\$ 100,000-\$ 86,989}{\$ 6,828}=1.91 .
$$

A Z value of 1.02 in Table B. 2
indicates a probability of
A Z value of 1.91 in Table B. 2
indicates a probability of
$\underline{0.4719}$
Probability
0.8180

There is an 81.8% chance that a randomly selected sale in this sample will fall between $\$ 80,000$ and $\$ 100,000$.

Confidence Level

Using statistical inference and the laws of probability for a normal distribution, the previous examples have shown how confidence intervals can be constructed for a sample when normally distributed data have been assumed or approximated. These calculations may be valuable in loan administration, housing development, appraising, and other decision-making situations involving real estate.

The examples have illustrated that, with 36 sales as a sample, an appraiser can state with a 95% degree of confidence that any sale randomly selected from the population will fall between $\$ 73,333$ and $\$ 100,645$. Similarly, there is a 68% level of confidence that a given sale will fall between $\$ 80,161$ and $\$ 93,817$.

These measures may be meaningful when used in conjunction with other statistical conclusions. However, they depend on how accurately the estimated mean represents the true population mean, so some confidence in the reliability of the mean must be established. Regardless of the size of the population, there is a specific sample size that will permit a certain level of confidence in the estimated mean.

For the 36 house sales, the standard deviation for price has been calculated as $\$ 6,828$. The arithmetic mean is $\$ 86,989$, or approximately $\$ 87,000$. If an appraiser wants to be 95% certain that the true mean is within $\$ 1,000$ of the estimated mean of $\$ 86,989-i . e .$, between $\$ 86,000$ and $\$ 88,000-$ the necessary sample size can be calculated with the following formula:

$$
\begin{aligned}
& n=\frac{z^{2} S^{2}}{e^{2}} \\
& n=\frac{(1.96)^{2}(\$ 6,828)^{2}}{(\$ 1,000)^{2}}=179 \text { sales }
\end{aligned}
$$

where $n=$ sample size required
$z=Z$ statistic at 95% confidence level
$s=$ standard deviation of the sample
$e=$ required maximum difference in the mean
Thus, with a sample of 179 sales, the required level of confidence could be met. Similarly, for a confidence interval of not more than $\$ 1,500$, the calculations would be

$$
n=\frac{(1.96)^{2}(\$ 6,828)^{2}}{(\$ 1,500)^{2}}=80 \text { sales }
$$

Using the original sample of 36 sales, an appraiser may want to know the limits within which the true population mean may fall at a 95% confidence level. By substitution

$$
e^{2}=\frac{z^{2} s^{2}}{n^{2}}
$$

and

$$
\begin{aligned}
& e^{2}=\frac{(1.96)^{2}(\$ 6,828)^{2}}{36}=\$ 4,975,041 \\
& e=\sqrt{\$ 4,975,041}=\$ 2,230
\end{aligned}
$$

Thus, the appraiser can be 95% certain that the true population mean falls between $\$ 84,759$ and $\$ 89,219$.

Although calculations such as these may not seem to be directly related to day-to-day appraising, professional appraisers have a continuing interest in obtaining adequate data and understanding the markets in which they appraise. Statistical calculations can be useful in quantifying change and performing the neighborhood analyses that are essential to value estimation. Many appraisers routinely analyze the inferences that can be drawn from measures such as the standard deviations of raw and adjusted sale or rental data. These calculations are also applied in appraisal review, loan underwriting, and other analyses.

Regression Analysis

Regression analysis is another technique used by appraisers to analyze market data. It can be applied to estimate value and to isolate and test the significance of specific value determinants.

Simple Linear Regression Analysis

To estimate a probable sale price in the market, it is seldom sufficient to develop a sample of sales, calculate the standard deviation, and base an estimate on this evidence. In most cases the range of values at the confidence level required is too broad to be useful. However, the accuracy of an estimate can be substantially increased by considering one or more characteristics of the sale properties in addition to their sale prices.

In simple linear regression analysis, one independent variable, or property characteristic, is used to reflect a relationship that changes on a straight-line basis. In other words, a change in the independent variable is reflected in the same proportion in the dependent variable, which is unknown. The basic regression equation is

$$
Y c=a+b X
$$

where Y_{c} is the predicted value of the dependent variable; a is the constant; b is the coefficient, or multiplier, for the independent variable; and X is the value of the variable. If, for example, the independent variable is the square foot area of a building and the dependent variable is its sale price, the simple linear regression equation $Y c=10,000+45 X$ means that the sale price of the building is predicted to be $\$ 10,000$ plus $\$ 45$ times its square foot area.

To find the constant, a, the data for this regression must be graphed. Increasing square foot areas are indicated along the horizontal axis of the graph and increasing sale prices are indicated along the vertical axis. Then a number of sales are plotted on the graph and a line that evenly divides these points is drawn. This is the regression line, and its slope is the b coefficient. The point on the vertical axis of the graph at which the regression begins is the intercept, or the constant symbolized as a. In other words, this is a base value that represents all positive and negative factors that are not explained by the equation and to which the coefficients, or adjustment factors, are added.

Another important statistic that results from a simple linear regression is the coefficient of determination, r^{2}. This statistic represents the approximate percentage of variation in the dependent variable, which is explained by the equation and is one
measure of the efficacy of the regression. When a regression is performed on an electronic, handheld calculator, the coefficient of determination given is unadjusted for degrees of freedom (i.e., the number of observations minus the number of variables). This adjustment should be applied to the resulting coefficient of determination:

$$
r^{2} \mathrm{adj}=1-\left(1-r^{2}\right)(n-1 / n-2)
$$

The standard error of the estimate is another measure of how well the regression fits. It is expressed as $S_{y x}$ and represents the remaining dispersion in the data after the regression equation is applied. The equation for arriving at the standard error of the estimate is:

$$
S_{y x}=S_{y} \sqrt{1-r^{2}}
$$

The b coefficient also has a t value. The t value is the coefficient expressed as a ratio to its standard deviation; it is a measure of the significance of the coefficient. The precise degree of significance represented by a particular t value depends on several factors and must be calculated. As a general rule, however, coefficients with t values greater than 2 are usually significant at a reasonably high confidence level.

Simple regression analysis is particularly useful when one element is overwhelmingly important in determining a property's sale price. Furthermore, this technique allows appraisers to analyze the relationships between real estate values and the significance of their various components.

Example of Simple Linear Regression

Using the 36 house sales analyzed earlier, simple linear regression can be used to demonstrate the apparent relationship between the sale price of a property and its living area in square feet. The gross living area (GLA) of each of the 36 houses is shown in Table B.3. Most appraisers would only analyze properties with the same approximate square foot area as the subject property and disregard the other sales.

The appraiser is valuing a 1,375 -sq.-ft. dwelling, so Sales 1,2 , and 3 are most similar in terms of size. Their prices are reported as $\$ 57.53$, $\$ 64.14$, and $\$ 55.95$ per square foot, respectively. The other sales may provide a clue to the "right answer," but they do little to resolve the discrepancy between these figures. Adjustments could be made for other differences in the properties, but complications would develop if multiple adjustments produced overlapping effects.

Sales 1,2 , and 3 indicate a price range of $\$ 55.95$ to $\$ 64.14$ per square foot; when these figures are applied to the $1,375-\mathrm{sq}$.-ft. area of the subject property, a value range of $\$ 76,931$ to $\$ 88,192$ is indicated. (These figures would be rounded in the appraiser's report.) The remaining market information cannot be used effectively in traditional appraisal analysis except perhaps to reinforce the appraiser's judgment.

With simple linear regression, however, more of the market data can be analyzed. To apply the formula $Y_{C}=a+b X$, the 36 sales were analyzed with a calculator and produced the following figures.

$$
\begin{aligned}
a & =\$ 49,261 \\
b & =\$ 22.59 \\
r & =0.6599 \text { (simple correlation coefficient) } \\
r^{2} & =0.4354 \\
r^{2}{ }_{\mathrm{adj}} & =1-(1-0.4354)(36-1 / 36-2) \\
& =0.4188 \text { (adjusted coefficient of determination) }
\end{aligned}
$$

TABLE B. 3
Comparable Sales Data Set for Simple Regression Analysis

Sale	GLA in Square Feet	Sale Price	Price per Square Foot GLA
1	1,321	\$76,000	\$57.53
2	1,372	88,000	64.14
3	1,394	78,000	55.95
4	1,403	74,600	53.17
5	1,457	85,800	58.89
6	1,472	87,400	59.38
7	1,475	84,000	56.95
8	1,479	85,600	57.88
9	1,503	72,000	47.90
10	1,512	77,200	51.06
11	1,515	82,000	54.13
12	1,535	79,000	51.47
13	1,535	87,800	57.20
14	1,577	91,000	57.70
15	1,613	90,000	55.80
16	1,640	79,800	48.66
17	1,666	91,000	54.62
18	1,681	79,800	47.47
19	1,697	87,200	51.38
20	1,703	87,000	51.09
21	1,706	89,800	52.64
22	1,709	90,600	53.01
23	1,709	93,800	54.89
24	1,720	93,800	54.53
25	1,732	82,000	47.34
26	1,749	97,200	55.57
27	1,771	97,200	54.88
28	1,777	86,000	48.40
29	1,939	87,800	45.28
30	1,939	90,000	46.42
31	1,939	90,000	46.42
32	1,939	90,000	46.42
33	1,939	96,600	49.82
34	1,940	87,800	45.26
35	2,014	98,800	49.06
36	2,065	97,000	46.97

Thus, for the 1,375 -sq.-ft. property being appraised,

$$
\begin{aligned}
Y_{C} & =\$ 49,261+\$ 22.59 \times 1,375 \\
& =\$ 80,322, \text { or } \$ 58.42 \text { per square foot }
\end{aligned}
$$

The 36 sales are plotted on the graph shown in Figure B.2, and the calculated regression line is indicated. The graph also shows the standard error of the estimate, which allows the appraiser to construct confidence intervals around the regression line. The calculations in this example produce a standard error estimate of $\$ 5,205$. When this figure is applied to the property being appraised, the appraiser can state that 36 sales in the market support an estimate of $\$ 80,300$ for the appraised property, based only on a comparison of their square foot area. Moreover, at a 68% confidence level, the market price should fall between $\$ 80,300+\$ 5,205-i . e$. from $\$ 75,095$ to $\$ 85,505$. At a 95% confidence level, the price should fall between $\$ 80,300 \pm 2 \times \$ 5,205$, or from $\$ 69,890$ to $\$ 90,710$.

Although other statistical measures such as the standard error of the forecast (Sf) may be used, most appraisers would consider this analysis to be sufficient and reasonably representative of most single-family market situations. Although a more refined analysis of these data could be performed, this example illustrates a simple application

Sourte : Josenh Lembert, Ph口

Figure B. 2 Plot of Sales, Regression Line, and Standard Error for 36 Sales
of a regression technique. The standard error of the forecast for the appraised property could be calculated as follows:

$$
\begin{aligned}
& S f=S_{y x} \sqrt{1+\frac{1}{n}+\frac{\left(X_{K}-\bar{X}\right)^{2}}{(X-\bar{X})^{2}}} \\
& S f=5,205 \sqrt{1+\frac{1}{36}+\frac{(1,720-1,670)^{2}}{1,469,045}} \\
& S f=5,281
\end{aligned}
$$

Applying this adjustment to the standard error makes only a small change because the measure of value (i.e., square footage) of the subject property is quite close to the mean square footage of the sample data. The greater the difference between the appraised property and the mean of the sample in regard to any property attribute, the
more this distortion affects the standard error as a measure of variation in the regression prediction.

Multiple Regression Analysis

Multiple regression analysis is performed with the same basic methods as simple linear regression, but the analysis is expanded to include more than one independent variable. Some handheld calculators are preprogrammed or can be programmed to perform regressions using two or three independent variables, but multiple regressions are generally performed on a computer. Step wise regression is an improvement on the standard regression procedure because variables can be added or removed from the regression equation depending on their degree of explanatory power. This type of regression produces an optimum combination of variables by retaining only the most significant.

Curvilinear Regression Analysis

Most appraisal data do not reflect straight-line relationships, but appraisers often deal with short segments of a curve so tools such as linear regression and correlation can be used. However, inferences can be distorted when linearity is assumed for data that are clearly curvilinear. Fortunately, many sets of curvilinear data may also be transformed rather easily and processed as if they were linear.

Decimal and Fractional Equivalents of a Foot (in./ft. Equivalents)

Inch	Decimal	Fraction	Inch	Decimal	Fraction	Inch	Decimal	Fraction
$1 "$.08	$1 / 12$	$5 "$.42	$5 / 12$	$9 "$.75	$3 / 4$
$2 "$.17	$1 / 6$	$6 "$.50	$1 / 2$	$10 "$.83	$5 / 6$
$3 "$.25	$1 / 4$	$7 "$.58	$7 / 12$	$11 "$.92	$11 / 12$
$4 "$.33	$1 / 3$	$8 "$.67	$2 / 3$	$12 "$	1.00	1

Weights

1 ounce	6 drams (dr.)	4 quarters on one-hundred weight (cwt.)	
1 pound	16 ounces (oz.)	1 short ton (s.t.)	2,000 pounds
1 quarter	25 pounds (lb.)	1 long ton (l.t.)	2,240 pounds

Measures
LINEAR MEASURES

1 inch: 1 link: 1 foot: 1 yard: 1 rod:	$\begin{array}{r} .0833 \mathrm{ft} . \\ 7.92 \mathrm{in} . \\ 12 \mathrm{in} . \\ 3 \mathrm{ft} . \\ 16.5 \mathrm{ft} . \\ 25 \text { links } \end{array}$	1 chain: 1 mile:	66 ft. 4 rods 100 links $5,280 \mathrm{ft}$ $1,760 \mathrm{yd}$. 320 rods 80 chains	1 acre: $208.71033 \mathrm{ft} . \mathrm{sq}$. $132 \mathrm{ft} . \times 330 \mathrm{ft}$. $110 \mathrm{ft} \times 396 \mathrm{ft}$. $145.2 \mathrm{ft} \times 300 \mathrm{ft}$. $198 \mathrm{ft} \times 220 \mathrm{ft}$. or any rectangular tract with an area of $43,560 \mathrm{sq}$. ft.

SQUARE MEASURES

Metric Conversion Table

NOTES:	1. Cost per linear foot $\times 3.281$	$=$ cost per meter
	2. Cost per square foot $\times 10.764$	$=$ cost per square meter
	3. Cost per cubic foot $\times 35.315$	$=$ cost per cubic meter
	4. Cost per cubic yard $\times 1.308$	$=$ cost per cubic meter

IRREGULAR AREAS

Computing Irregular Areas

PARALLELOGRAM A quadrilateral having its opposite sides parallel.

TRAPEZOID A quadrilateral having two and only two sides parallel.

The altitude (h) of a parallelogram or trapezoid is the perpendicular distance between the parallel sides.

TRAPEZIUM A quadrilateral having no two sides parallel. The area of a trapezium can only be determined by dividing the figure into triangles, parallelograms and/or trapezoids and totaling the individual areas.

$$
A R E A=\left(\frac{a \times b}{2}\right)+\left(\frac{b+d}{2}\right) c+\left(\frac{e \times d}{2}\right)
$$

TRIANGLE A three-sided polygon. The altitude (h) of a triangle is the perpendicular from any vertex to the opposite side (extended if necessary).

PROPERTIES OF A CIRCLE

Area $=D^{2} \mathrm{x} .7854 \quad$ Circumference $=D \times 3.1416$
$=R^{2} \times 3.1416$
$=C^{2} x \quad .07958$

$$
\begin{array}{rlrl}
\text { Diameter } & =\mathrm{R} \times \mathrm{x} 2 & \text { Radius } & \\
& =\mathrm{D} \div 2 \\
& =\mathrm{C} \quad \mathrm{x} & .3183 & \\
& =\mathrm{C} \times \quad .159155
\end{array}
$$

FORMULAS

Areas and Volumes

Area of a rectangle:
Perimeter of a rectangle:
Area of a square:
Perimeter of a square:
Area of a parallelogram:
Area of a triangle:
Area of a circle:
Circumference of a circle:
Volume:
Cost to build a home: house
length x width $=$ area
2 x length +2 x width $=$ perimeter
side x side $=$ area
4 x side $=$ perimeter
base x height $=$ area
$1 / 2($ base x height $)=$ area
$\pi r^{2}=$ area
$\pi d=$ circumference
length x width x height $=$ volume
length x width x cost per square foot $=$ cost to build

Ratios

$\frac{\text { Assessor's estimate of value }}{\text { Selling price of property }}$
Square feet of ground area
$\overline{\text { Linear feet of building perimeter }}$

Basic Math Functions and Order of Operations

Find s in each of the equations

$$
\begin{array}{ll}
(s+25) \div 2-100 \times 10=5 & \text { Answer }(s=1985) \\
(s \times 4)+[300 \div(10-20)]=14 & \text { Answer }(s=11)
\end{array}
$$

WORD PROBLEMS

Example: If two masons can lay 120 bricks per day, how many bricks can be laid by three masons in five days?

$$
\text { Answer }=3 \times 60 \times 5=900 \text { bricks }
$$

Example 1: How much does it cost to cover the floor of a recreation room 20 feet by 35 feet if the linoleum is $\$ 2.65$ a square yard?

Example 2: How many acres are in a rectangular field with a frontage of 565 yards and a depth of 420 yards? $(43,560$ square feet $=1$ acre $)$

Example 3: The base length of a truss is 45 feet and its height is 8 feet. What is the the area enclosed by the truss?

Example 4: A legal description, when drawn out, is a parallelogram. The road frontage of the property is 100 linear feet, and the distance from the road to the back line of the property is 245 feet. What is the area of the legal description?

Example 5: Farmer A constructs a 70-foot-high Harvestore silo. The radius of the concrete footing for the silo is 15 feet. Farmer B constructs a 90 -foot-high Rochester concrete stave silo. The diameter of this silo is 35 feet. Farmer C constructs a 65 -foot-high stave silo. Its concrete footing has a circumference of 70 feet. What ground area does each of these silos cover?

Example 6: Mr. Smith owns a grocery store. In order to handle all of his new business, he has to build an addition onto his current store. The addition measures 40 feet wide by 30 feet long. The height of the addition is 12 feet. How many cubic feet of volume are in the addition?

Example 7: A contractor orders the following for framing a garage:
40 studs, 2" x 4" x 8'
6 sills, 2" x 4" x 20'
6 plates, 2" x 4" x 20'
26 rafters, 2" x 4" x 14 '
65 pieces, $1 " \times 6 " \times 22$ ' for sheathing
With a per-board-foot cost of $\$ 2.50$, what is the total cost of this order?

Example 8: Mr. Jones is the assessor for the town of XYZ. He wanted to find out what his level of assessment was, so he decided to analyze the sales that had occurred in his district. These are the sales:

Sale	Sale Amount	Assessment
A	145,000	101,500
B	86,000	43,000
C	235,000	70,650
D	179,400	152,490
E	364,900	164,205

Based on the information above, what are the mean, median and aggregate assessment ratios for Town XYZ?

Example 9: As an assessor, you obtain the following cost information from a local contractor:
Item Cost

Drywall	$\$ \quad .40$ per sq. ft.
Insulation	.38 per sq. ft.
Plywood	.42 per sq. ft.
Carpet padding	.25 per sq. yd.
Carpet	10.99 per sq. yd.
Linoleum	8.99 per sq. yd.
Paneling	1.50 per sq. ft.
Paint	10.00 per gallon
Nails	.59 per lb.

Mr. Brown plans to finish off his basement, and he finds that he needs the following:
595 sq. ft. of drywall, 595 sq. ft. of insulation, 300 sq. ft. of paneling, 2 gallons of paint, $101 / 2 \mathrm{lb}$. of nails, 4 sq . yd. of plywood, 810 sq . ft. of carpet and padding and 10 sq . yd. of linoleum. What is the total cost of the required materials?

Example 10: How many sheets of metal, each $1 / 32$ " thick, are there in a pile $127 / 8$ " high?

Example 11: How many flooring boards, each $31 / 5$ " wide are there in the width of a corridor 5'5" wide?

ANSWERS TO MATH PROBLEMS

(1) $\$ 206.11$
(2) 49.03 acres
(3) 180 sq. ft.
(4) 24,500 sq. ft.
(5) A. 706.86 sq. ft.
B. 962.11 sq. ft . C. 389.93 sq. ft.
(6) $14,400 \mathrm{cu} . \mathrm{ft}$.
(7) $\$ 3,327.50$
(8) mean $=56 \%$
median $=50 \%$ aggregate ratio $=53 \%$
(9) $\$ 2,056.92$
(10) 412
(11) $205 / 16$ or 20.3125

Reprinted with permission from The Appraisal of Real Estate,
11 th edition, ©1996 by The Appraisal Institute, Chicago, IL.

ADDITIONAL OTHER FEATURES	AMOUNT	CON/DES/USFL		No.	EX	vg	GD		FR	PR	vp	UN	UNF
ROOF ADJUSTMENT - METAL Whole house generator WD FURNACE IN _ OUT _		EXTERIOR WALLS											
		ROOF \& COVER											
		WINDOWS \& DOORS											
1		Heating											
2		ELECTRICAL											
3		PLUMBING											
4		B	REC ROOM										
5			FBLA										
6			OTHER										
7			KITCHEN										
8			DINING RM										
TOTALADD'L. OTH. FEATURESCARRY TOTALTO 559	AMOUNT		LIVING RM										
			BATHROOM										
			POWDER RM										
ADDITIONALATTACHMENTS			BEDROOM										
1 -			FAMIY RM										
2		1st	OTHER										
3			KITCHEN										
4			DINING RM										
5			LIVING RM										
6			BATHROOM										
7		${ }^{\text {ATT }}$	BEDROOM										
8			OTHER										
TOTAL 99 ADITIIONAL ATTACHMENTSCARRY TOTAL TO 606		3 rd	LIVIING AREA				- Stable						
			LOCATION	-Improving					- declining				

[^0]: Note: For Base Price Adjustments, see Page 5-44.

[^1]: For Mobile Homes, use for the entire state.

